Table of Contents

Class Conv2D

Namespace
NeuralNetworks.Operations
Assembly
NeuralNetworks.dll

Dimensions of the input are: [batch, channels, height, width] Dimensions of the param array are: [channels, filters, kernelSize, kernelSize] Padding is assumed to be the same on all sides = kernelSize / 2

public class Conv2D : ParamOperation4D<float[,,,]>
Inheritance
Operation<float[,,,], float[,,,]>
Conv2D
Inherited Members

Constructors

Conv2D(float[,,,])

Dimensions of the input are: [batch, channels, height, width] Dimensions of the param array are: [channels, filters, kernelSize, kernelSize] Padding is assumed to be the same on all sides = kernelSize / 2

public Conv2D(float[,,,] weights)

Parameters

weights float[,,,]

Methods

CalcInputGradient(float[,,,])

Calculates input gradient.

protected override float[,,,] CalcInputGradient(float[,,,] outputGradient)

Parameters

outputGradient float[,,,]

Returns

float[,,,]

Remarks

Based on outputGradient, calculates changes in input.

CalcOutput(bool)

Computes output.

protected override float[,,,] CalcOutput(bool inference)

Parameters

inference bool

Returns

float[,,,]

CalcParamGradient(float[,,,])

protected override float[,,,] CalcParamGradient(float[,,,] outputGradient)

Parameters

outputGradient float[,,,]

Returns

float[,,,]

EnsureSameShapeForParam(float[,,,]?, float[,,,])

protected override void EnsureSameShapeForParam(float[,,,]? param, float[,,,] paramGradient)

Parameters

param float[,,,]
paramGradient float[,,,]

GetParamCount()

public override int GetParamCount()

Returns

int

UpdateParams(Layer?, Optimizer)

public override void UpdateParams(Layer? layer, Optimizer optimizer)

Parameters

layer Layer
optimizer Optimizer