Class Conv2D
- Namespace
- NeuralNetworks.Operations
- Assembly
- NeuralNetworks.dll
Dimensions of the input are: [batch, channels, height, width] Dimensions of the param array are: [channels, filters, kernelSize, kernelSize] Padding is assumed to be the same on all sides = kernelSize / 2
public class Conv2D : ParamOperation4D<float[,,,]>
- Inheritance
-
ParamOperation4D<float[,,,]>Conv2D
- Inherited Members
Constructors
Conv2D(float[,,,])
Dimensions of the input are: [batch, channels, height, width] Dimensions of the param array are: [channels, filters, kernelSize, kernelSize] Padding is assumed to be the same on all sides = kernelSize / 2
public Conv2D(float[,,,] weights)
Parameters
weightsfloat[,,,]
Methods
CalcInputGradient(float[,,,])
Calculates input gradient.
protected override float[,,,] CalcInputGradient(float[,,,] outputGradient)
Parameters
outputGradientfloat[,,,]
Returns
- float[,,,]
Remarks
Based on outputGradient, calculates changes in input.
CalcOutput(bool)
Computes output.
protected override float[,,,] CalcOutput(bool inference)
Parameters
inferencebool
Returns
- float[,,,]
CalcParamGradient(float[,,,])
protected override float[,,,] CalcParamGradient(float[,,,] outputGradient)
Parameters
outputGradientfloat[,,,]
Returns
- float[,,,]
EnsureSameShapeForParam(float[,,,]?, float[,,,])
protected override void EnsureSameShapeForParam(float[,,,]? param, float[,,,] paramGradient)
Parameters
GetParamCount()
public override int GetParamCount()
Returns
UpdateParams(Layer?, Optimizer)
public override void UpdateParams(Layer? layer, Optimizer optimizer)