
Table of Contents
0. Wstęp 2
1. Prosta regresja liniowa 4
2. Po co nam macierze? 21
3. Dane Boston Housing 37
4. Pierwsza sieć neuronowa 48
5. Biblioteka NeuralNetworks 63
6. Dane MNIST 94

2 / 96

0. Wstęp
Niniejszy artykuł - Sieci neuronowe (C#) - ma na celu zilustrowanie podstawowych pojęć z zakresu sieci
neuronowych za pomocą przykładów napisanych w C#. Równolegle, część z tu zaprezentowanych
programów ma swoje odpowiedniki przeniesione do Delphi Object Pascala.

Dla kogo jest ten artykuł? Przede wszystkim dla programistów C#, którzy chcą zrozumieć, jak działają
sieci neuronowe "od środka", bez korzystania z gotowych bibliotek i frameworków. Artykuł zakłada
podstawową znajomość programowania w C# oraz podstaw matematyki (algebra liniowa, rachunek
różniczkowy). I to w zasadzie tyle - reszta wiedzy jest przekazywana w trakcie lektury.

Pełne kody źródłowe dostępne są w repozytorium na GitHub .

Dostępna jest również wersja w formacie PDF.

Spis treści
Artykuł został podzielony na następujące rozdziały:

1. Prosta regresja liniowa

W rozdziale tym opisano regresję liniową (jako szczególny przypadek sieci neuronowej), metodę
najmniejszych kwadratów, metodę spadku gradientowego do uczenia modelu, funkcję straty MSE oraz
jej pochodne (względem współczynnika kierunkowego i wyrazu wolnego).

2. Po co nam macierze?

W rozdziale tym opisana została regresja wieloraka, macierze i implementacja podstawowych operacji
macierzowych, które posłużą w dalszej części artykułu do konstrukcji sieci neuronowych.

3. Dane Boston Housing

Przedstawiono proces uczenia modelu regresji wielorakiej na rzeczywistych danych z zestawu Boston
Housing z użyciem metod omówionych w rozdziale 2. Przedstawiono również sposób przygotowania
danych do uczenia modelu (podział na zbiór uczący i testowy, standaryzacja).

4. Pierwsza sieć neuronowa

Przedstawiono budowę i działanie prostej sieci neuronowej z jedną warstwą ukrytą, porównując ją z
modelem regresji wielorakiej. Omówiono proces uczenia sieci za pomocą metody spadku gradientowego
i reguły łańcuchowej. Przedstawiono podstawowe wzory na pochodne funkcji straty względem wag i
biasów poszczególnych warstw sieci.

5. Biblioteka NeuralNetworks

https://github.com/kowaliszyn-pl/ml-csharp
https://github.com/kowaliszyn-pl/ml-csharp
https://github.com/kowaliszyn-pl/ml-csharp

3 / 96

Przedstawiono strukturę i funkcjonalność biblioteki NeuralNetworks (C#), służącej do definiowania i
trenowania modeli sieci neuronowych oraz do przeprowadzania procesu wnioskowania (inferencji) z
użyciem tych modeli. Omówiono sposób definiowania architektury sieci, funkcji aktywacji, funkcji straty
oraz metod optymalizacji dostępnych w bibliotece. Przedstawiono wzory matematyczne i implementacje
podstawowych elementów, takich jak funkcje aktywacji, funkcje straty oraz algorytmy optymalizacji.
Zaprezentowano również przykład użycia tej biblioteki do utworzenia modelu trenowanego na danych
Boston Housing.

6. Dane MNIST

Zaprezentowano dwie sieci neuronowe (sieć z warstwami gęstymi oraz sieć konwolucyjną) trenowane na
zbiorze danych MNIST do rozpoznawania ręcznie pisanych cyfr.

Reszta in progress...

Created: 2025-11-10

Last modified: 2025-12-19

Title: 0. Wstęp

Tags: [C#] [Object Pascal] [Delphi] [Sieci neuronowe] [Regresja liniowa]

4 / 96

1. Prosta regresja liniowa
Omawianie sieci neuronowych w kontekście języka C# rozpoczniemy od funkcji liniowej i regresji liniowej.

1.1. Co to takiego?
Funkcja liniowa opisuje zależność między zmiennymi za pomocą wyrażenia liniowego

, a regresja liniowa wykorzystuje tę zależność do modelowania i
przewidywania wartości jednej zmiennej na podstawie innej lub wielu innych zmiennych.

Zmienne nazywane są zmiennymi niezależnymi, a zmienna - zmienną zależną.
Współczynniki (albo współczynniki kierunkowe) określają stopień wpływu
poszczególnych zmiennych niezależnych na zmienną zależną (im większa jest bezwzględna wartość
współczynnika kierunkowego, tym większy wpływ; współczynnik równy zeru oznacza brak wpływu).
Parametr jest nazywany wyrazem wolnym.

Przyjmuje się, że prosta regresja liniowa (ang. simple linear regression) to model regresji liniowej z jedną
zmienną niezależną (czyli z jednym współczynnikiem kierunkowym i wyrazem wolnym), a wieloraka
regresja liniowa (lub wielokrotna regresja liniowa, ang. multiple linear regression) to model regresji liniowej z
wieloma zmiennymi niezależnymi (czyli z wieloma współczynnikami kierunkowymi i wyrazem
wolnym).

Więcej na ten temat można przeczytać w Wikipedii: Regresja liniowa i Funkcja liniowa .

1.2. Metoda najmniejszych kwadratów
Istnieje wiele metod służących do budowania modelu regresji liniowej. Najprostszą z nich jest metoda
najmniejszych kwadratów, która ma zamknięte rozwiązanie analityczne.

Dla funkcji z jedną zmienną niezależną w postaci możemy obliczyć współczynnik kierunkowy:

oraz wyraz wolny:

gdzie

NOTE

Dlaczego zaczynamy od regresji liniowej? Dlatego, że regresja liniowa może być traktowana jak sieć
neuronowa o jednej warstwie z jednym neuronem o liniowej funkcji aktywacji.



https://pl.wikipedia.org/wiki/Regresja_liniowa
https://pl.wikipedia.org/wiki/Regresja_liniowa
https://pl.wikipedia.org/wiki/Regresja_liniowa
https://pl.wikipedia.org/wiki/Funkcja_liniowa
https://pl.wikipedia.org/wiki/Funkcja_liniowa
https://pl.wikipedia.org/wiki/Funkcja_liniowa

5 / 96

 – kolejne punkty danych (obserwacje),
 – średnia z ,
 – średnia z ,

 – liczba obserwacji.

1.2.1. Przykład liczbowy
Przykładowe dane dotyczące sprzedaży jakiegoś produktu w zależności od jego ceny (dane treningowe)
przedstawia poniższa tabela.

Obserwacja (i) Cena [zł] (x) Sprzedaż [szt] (y)

1 10 100

2 20 80

3 30 60

4 40 40

5 50 20

Tabela 1.1. Dane treningowe: cena/sprzedaż

Najpierw obliczamy wartości średnie:

Następnie obliczamy współczynnik kierunkowy . Zgodnie na wzorem (1.1) jego licznik wynosi:

a mianownik:

Współczynnik przyjmuje więc wartość:

Na koniec obliczamy wyraz wolny :

6 / 96

W ten sposób otrzymujemy następujący wzór na poszukiwaną funkcję:

Proste, prawda? 😎

1.3. Metoda spadku gradientowego
W kontekście uczenia maszynowego bardziej interesującym algorytmem jest metoda spadku gradientowego
(zwana również metodą spadku gradientu, ang. gradient descent, GD), która polega na iteracyjnej aktualizacji
parametrów szukanej funkcji (modelu regresji).

Zaczynamy od wyboru wartości losowych dla i (choć możemy po prostu wstępnie ustawić je
na 0), a następnie iteracyjnie zwiększamy lub zmniejszamy te wartości, tak aby zminimalizować tzw. funkcję
straty.

Funkcja straty (ang. loss function, zwana również funkcją kosztu) mierzy to, jak dobrze model dopasowuje się
do danych treningowych. Im mniejsza wartość tej funkcji, tym lepsze dopasowanie (ale bez przesady - zbyt
dobre dopasowanie , czyli tzw. overfitting, też jest niepożądane). W przypadku regresji liniowej funkcją straty
jest zazwyczaj MSE (czyli błąd średniokwadratowy , ang. Mean Square Error). Inne stosowane funkcje straty to
SSE (Sum of Squared Errors) i RMSE (Root Mean Square Error).

Błąd średniokwadratowy jest zdefiniowany jako:

gdzie:

 – liczba obserwacji,
 – przewidywana wartość zmiennej zależnej dla obserwacji

(parametry nie zależą od indeksu),
 – rzeczywista wartość zmiennej zależnej.

NOTE

Angielski termin gradient descent jest często tłumaczony jako spadek gradientu, co wydaje się być mylące.
W metodzie tej nie chodzi bowiem o to, że sam gradient "spada" - jego wartość, w zależności od
geometrycznego kształtu funkcji straty, może nawet w kolejnych iteracjach rosnąć - ale mimo to taka
nazwa ogólnie się przyjęła. Wg mnie lepszym terminem jest właśnie spadek gradientowy (a nawet
schodzenie gradientowe).



https://pl.wikipedia.org/wiki/Funkcja_straty
https://pl.wikipedia.org/wiki/Funkcja_straty
https://pl.wikipedia.org/wiki/Funkcja_straty
https://pl.wikipedia.org/wiki/Nadmierne_dopasowanie
https://pl.wikipedia.org/wiki/Nadmierne_dopasowanie
https://pl.wikipedia.org/wiki/Nadmierne_dopasowanie
https://pl.wikipedia.org/wiki/B%C5%82%C4%85d_%C5%9Bredniokwadratowy
https://pl.wikipedia.org/wiki/B%C5%82%C4%85d_%C5%9Bredniokwadratowy
https://pl.wikipedia.org/wiki/B%C5%82%C4%85d_%C5%9Bredniokwadratowy

7 / 96

Aby znaleźć optymalne wartości parametrów modelu, współczynniki (oraz wyraz wolny) są
iteracyjnie aktualizowane w następujący sposób:

gdzie:

 – współczynniki funkcji liniowej (dla),
 - współczynnik uczenia (o nim poniżej),

 – pochodna funkcji straty względem współczynnika .

Wzór na pochodną względem to:

a więc ostatecznie aktualizacja współczynnika wygląda tak:

Wyraz wolny aktualizowany jest w podobny sposób:

gdzie pochodna względem jest równa:

Jak widać, wzory na powyższe pochodne są podobne do siebie, z tym że w przypadku uwzględniają
dodatkowo zmienną niezależną , a w przypadku - nie.

NOTE

Nie należy mylić z . To pierwsze to wartość przewidywana, to drugie to wartość średnia.


NOTE

Symbol to operator przypisania (czyli "przypisz wartość z prawej strony do zmiennej po lewej stronie").
Będziemy go stosować dla odróżnienia od znaku równości używanego we wzorach matematycznych.



8 / 96

1.3.1. Po co w ogóle jest nam potrzebna pochodna?
Dlaczego zmiany parametrów regresji w kolejnych iteracjach są proporcjonalne (współczynnikiem
proporcjonalności jest tu współczynnik uczenia) do pochodnej funkcji straty względem tych parametrów?
Dlatego, że pochodna mówi nam o tym, w którą stronę mamy zmierzać ze zmianami parametrów i , tak aby
funkcja straty malała.

Albo inaczej: gradient (czyli wektor pochodnych cząstkowych) wskazuje nam kierunek najszybszego wzrostu
funkcji straty. A ponieważ szukamy drogi, która poprowadzi nas do spadku tej funkcji, więc poruszamy się w
kierunku przeciwnym (stąd minus we wzorze).

Dla danych z tabeli 1.1 wykres funkcji straty, po której się poruszamy wygląda tak:

Wykres 1.1. Funkcja straty MSE w zależności od współczynników regresji liniowej i

Jej minimum przypada na punkt . Współczynniki te odpowiadają funkcji regresji liniowej
 z równania (1.7).

A więc: zaczynamy naszą zgadywankę na przykład od punktu (punkt startowy dobry jak każdy
inny). Otrzymujemy dla niego jakąś - większą od zera - wartość MSE. Ponieważ interesuje nas najmniejsze
możliwe do osiągnięcia MSE (najlepiej równe 0), to obliczamy pochodną (gradient) w tym właśnie punkcie

, która to pochodna wskazuje nam kierunek, w którym rośnie MSE. Gdy zmienimy znak wartości
tej pochodnej (minus na początku wzoru:), będzie ona wskazywać kierunek, w którym MSE
maleje.

9 / 96

W ten sposób możemy zaktualizować współczynniki regresji, aby zbliżyć się do minimum funkcji straty. Super
👍.

1.3.2. Współczynnik uczenia
Współczynnik uczenia (, ang. learning rate) to hiperparametr, który kontroluje wielkość kroku, jaki
wykonujemy w kierunku minimum MSE w każdej iteracji. Jest wspólny dla wszystkich parametrów modelu i
zawsze większy od 0. Zbyt duża wartość może prowadzić do niestabilności i oscylowania wokół minimum
funkcji straty (model uczy się gorzej), podczas gdy zbyt mała wartość może spowodować zbyt wolne zbieganie
do minimum (model uczy się wolniej).

Poniżej przedstawiono animację ilustrującą wpływ różnych wartości współczynnika uczenia (= 0,01; 0,044;
0,21; 0,25; 0,256) na tempo spadku wartości funkcji straty w trakcie uczenia modelu regresji liniowej metodą
spadku gradientowego.

Wykres 1.2. Porównanie tempa spadku gradientowego dla różnych współczynników uczenia. Mamy tutaj daną
 oraz funkcję , a więc szukanym parametrem jest w tym przypadku . Wartość

początkowa, od której rozpoczynamy poszukiwanie, wynosi tu

10 / 96

1.3.3. Przykład liczbowy
Zastosujemy teraz metodę spadku gradientowego dla danych z poprzedniego przykładu (cena/sprzedaż), aby
znaleźć współczynniki regresji liniowej. Zaczniemy od wartości początkowych i , a współczynnik
uczenia ustawimy na .

Przeprowadźmy obliczenia dla pierwszych dwóch iteracji.

W każdej iteracji obliczamy:

przewidywane wartości ,
wartości błędu (),
pochodną względem współczynnika , tj. oraz
pochodną względem współczynnika , tj. .

1.3.3.1. Pierwsza iteracja
W poniższej tabeli umieszczono wyniki obliczeń dla pierwszej iteracji. Przewidywane wartości są równe zeru,
ponieważ zaczynamy od wartości początkowych i .

Cena [zł] (x) Sprzedaż [szt] (y) Przewidywana sprzedaż () Błąd ()

10 100 0 * 10 + 0 = 0 0 - 100 = -100

20 80 0 * 20 + 0 = 0 0 - 80 = -80

30 60 0 * 30 + 0 = 0 0 - 60 = -60

40 40 0 * 40 + 0 = 0 0 - 40 = -40

50 20 0 * 50 + 0 = 0 0 - 20 = -20

Tabela 1.2. Obliczenia dla pierwszej iteracji

Dla pierwszej iteracji:

MSE (funkcja straty) wynosi:

Pochodna względem wynosi:

11 / 96

Pochodna względem wynosi:

Parametry modelu po aktualizacji przyjmują wartości:

Płaszczyzna ilustrująca pochodną MSE w punkcie ma wzór .
Poszczególne jej parametry wynikają z równań (1.14), (1.15) i (1.16).

Na poniższych wykresach (oba przedstawiają to samo, tylko z nieco innej perspektywy) oznaczono:

punktem czerwonym - punkt styczności "płaszczyzny pochodnej" (kolor cyjanowy) z wykresem MSE (kolor
brązowy),
punktem zielonym - współrzędne , które otrzymaliśmy po pierwszej iteracji (wzory
(1.17) i (1.18)), poruszając się wzdłuż kierunku spadku wartości MSE, czyli jakby tocząc się w dół po
"cyjanowej płaszczyźnie".

12 / 96

Wykres 1.3. Funkcja straty i płaszczyzna pochodnej w punkcie (a=0, b=0)

13 / 96

Wykres 1.4. Funkcja straty i płaszczyzna pochodnej w punkcie (a=0, b=0) - inna perspektywa

Na marginesie, zauważmy, że wykresy 1.1 i 1.2 (i oczywiście 1.3) przedstawiają tę samą funkcję straty MSE.
Różnica w kształcie wynika z innych zakresów wartości współczynników i na osiach poziomych. Wykres 1.1
pokazuje funkcję straty w zakresie i (tam znajduje się jej minimum), a wykresy 1.2 i
1.3 - w zakresie i (tam znajduje się startowy punkt iteracji).

1.3.3.2. Druga iteracja
W drugiej iteracji powtarzamy powyższe kroki, przy czym teraz używamy już nowych wartości współczynników

 i .

Tabela z obliczonymi błędami wygląda następująco:

Cena [zł] (x) Sprzedaż [szt] (y) Przewidywana sprzedaż () Błąd ()

10 100 1.4 * 10 + 0.06 = 14.06 14.06 - 100 = -85.94

20 80 1.4 * 20 + 0.06 = 28.06 28.06 - 80 = -51.94

30 60 1.4 * 30 + 0.06 = 42.06 42.06 - 60 = -17.94

40 40 1.4 * 40 + 0.06 = 56.06 56.06 - 40 = 16.06

50 20 1.4 * 50 + 0.06 = 70.06 70.06 - 20 = 50.06

Tabela 1.3. Obliczenia dla drugiej iteracji

I podobnie jak wyżej, dla drugiej iteracji:

MSE wynosi:

Pochodna względem wynosi:

Pochodna względem wynosi:

Parametry modelu po aktualizacji przyjmują wartości:

14 / 96

1.3.3.3. Kolejne iteracje
Iteracje powtarzamy do momentu, aż wartości funkcji straty przestaną się znacząco zmieniać lub osiągniemy
założone maksimum liczby iteracji.

Przykładowe wartości dla 4 pierwszych iteracji pokazane są na poniższym rysunku:

Rysunek 1.1. Wartości parametrów regresji liniowej i MSE w kolejnych iteracjach

1.3.4. Przykład implementacji
Poniżej znajduje się przykład implementacji w C# regresji liniowej przy użyciu metody spadku gradientowego.
Kod źródłowy znajduje na GitHub .

Stałe LearningRate, Iterations i PrintEvery odpowiadają kolejno za współczynnik uczenia (5e-4), liczbę iteracji
(35 tysięcy) oraz częstotliwość wypisywania informacji o postępach na konsolę (co 1 tysiąc). Liczbę iteracji
można ustawić na 4 a PrintEvery na 1, aby wyświetlić dane takie jak na rysunku 1.1.

Console.OutputEncoding = System.Text.Encoding.UTF8;

// 1. Set the parameters for the model

const float LearningRate = 0.0005f;
const int Iterations = 35_000; // 4
const int PrintEvery = 1_000; // 1

// 2. Prepare training data

float[,] data = {
 { 10, 100 },
 { 20, 80 },
 { 30, 60 },
 { 40, 40 },
 { 50, 20 },
};

// 3. Initialize model

https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/SimpleLinearRegression/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/SimpleLinearRegression/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/SimpleLinearRegression/Program.cs

15 / 96

float a = 0, b = 0;

// Number of samples
int n = data.GetLength(0);

// 4. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{
 // Initialize accumulators for errors
 float sumErrorValue = 0, sumError = 0, squaredError = 0;

 // For each sample in data
 for (int row = 0; row < n; row++)
 {
 float x = data[row, 0];
 float y = data[row, 1];

 // Prediction and error calculation
 float prediction = a * x + b;
 float error = prediction - y;

 // Accumulate squared error and parts needed for gradient calculation
 squaredError += error * error;
 sumErrorValue += error * x;
 sumError += error;
 }

 // Calculate gradients (partial derivatives of MSE)
 float deltaA = 2.0f / n * sumErrorValue;
 float deltaB = 2.0f / n * sumError;

 // Update regression parameters
 a -= LearningRate * deltaA;
 b -= LearningRate * deltaB;

 if (iteration % PrintEvery == 0)
 {
 // MSE
 float meanSquaredError = squaredError / n;

 Console.WriteLine($"Iteration: {iteration,5} | MSE: {meanSquaredError,10:F5} | ∂MSE/∂a:
{deltaA,10:F4} | ∂MSE/∂b: {deltaB,10:F4} | a: {a,9:F4} | b: {b,9:F4}");
 }
}

// 5. Output learned parameters

Console.WriteLine();

16 / 96

Listing 1.1. Implementacja regresji liniowej w C# przy użyciu metody spadku gradientowego

Na rysunku 1.2 możemy zobaczyć, że po 35 tysiącach iteracji wartości współczynników regresji liniowej (
 i) zbliżyły się do oczekiwanych wartości (i).

Rysunek 1.2. Wartości parametrów regresji liniowej i MSE po 35 tysiącach iteracji

1.4. Podsumowanie
W tym rozdziale omówiliśmy podstawy regresji liniowej, w tym metodę spadku gradientowego, którą
wykorzystamy w kolejnych rozdziałach podczas uczenia sieci neuronowych.

1.5. Dodatek
1.5.1. Zupa z gwoździa (czyli wyprowadzanie wzorów)
Poniżej, dla kompletności opisu, przedstawiono wyprowadzenia wzorów na pochodne funkcji MSE względem
współczynników (wzór 1.10) i (wzór 1.13):

Console.WriteLine($"{"Learned parameters:",-20} a = {a,9:F4} | b = {b,9:F4}");
Console.WriteLine($"{"Expected parameters:",-20} a = {-2,9:F4} | b = {120,9:F4}");
Console.ReadLine();

NOTE

Port powyższego kodu do Delphi Object Pascal można znaleźć tutaj.


17 / 96

1.5.2. Skrypty do odtworzenia wykresów
Cały niniejszy artykuł jest ilustrowany implementacją w C# (taki zresztą jest jeden z jego celów), ale akurat w
przypadku wykresów najprostsze i najszybsze jest skorzystanie z Pythona. Poniżej znajduje się kod przydatny
do odtworzenia wykresów z tego rozdziału.

Dla wykresu 1.1:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Training data: y = -2 * x + 120

x = np.array([10, 20, 30, 40, 50])

18 / 96

Listing 1.2

Dla wykresów 1.3 i 1.4:

y_true = -2 * x + 120

Grid

a_vals = np.linspace(-5, 1, 100)
b_vals = np.linspace(100, 140, 100)

A, B = np.meshgrid(a_vals, b_vals)

MSE calculation

MSE = np.mean((A * x[:, None, None] + B - y_true[:, None, None]) ** 2, axis=0)

Chart

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

Wireframe (net) only:

ax.plot_wireframe(A, B, MSE, color='brown', linewidth=0.5, alpha=0.5)
ax.set_xlabel('a')
ax.set_ylabel('b')
ax.set_zlabel('MSE')

plt.show()

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Training data: y = -2 * x + 120

x = np.array([10, 20, 30, 40, 50])
y_true = -2 * x + 120

Grid

a_vals = np.linspace(-2, 2, 100)
b_vals = np.linspace(-30, 30, 100)

A, B = np.meshgrid(a_vals, b_vals)

MSE calculation

19 / 96

Listing 1.3

MSE = np.mean((A * x[:, None, None] + B - y_true[:, None, None]) ** 2, axis=0)

Chart

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

Wireframe

ax.plot_wireframe(A, B, MSE, color='brown', linewidth=0.5, alpha=0.5)
ax.set_xlabel('a')
ax.set_ylabel('b')
ax.set_zlabel('MSE')

Adding a tangent plane at point (a0=0, b0=0)
Plane equation: Z = grad_a * (A - a0) + grad_b * (B - b0) + MSE0
MSE0 is the MSE at point (a0, b0)

grad_a = -2800
grad_b = -120
a0, b0 = 0, 0
MSE0 = np.mean((a0 * x + b0 - y_true) ** 2)
tangent_plane = grad_a * (A - a0) + grad_b * (B - b0) + MSE0

Drawing the tangent plane

ax.plot_surface(A, B, tangent_plane, color='cyan', alpha=0.4)

Add the red point (0, 0, MSE0)

ax.scatter(a0, b0, MSE0, color='red', s=50, label='Punkt (0, 0, MSE0)')

Add the green point (1.4, 0.06, MSE1)

a1, b1 = 1.4, 0.06
MSE1 = np.mean((a1 * x + b1 - y_true) ** 2)
ax.scatter(a1, b1, MSE1, color='green', s=50, label='Punkt (1.4, 0.06, MSE1)')

Printing the gradients and MSE values

print(f"Gradient a: {grad_a}, Gradient b: {grad_b}, MSE at (0, 0): {MSE0}")
print(f"MSE at (1.4, 0.06): {MSE1}")

plt.show()

20 / 96

See you next time! 👋

Created: 2025-06-19

Last modified: 2025-12-22

Title: 1. Prosta regresja liniowa

Tags: [C#] [Python] [Sieci neuronowe] [Regresja liniowa] [Funkcja liniowa]

21 / 96

2. Po co nam macierze?
W poprzednim rozdziale zajmowaliśmy się prostą regresją liniową. Teraz rozbudujemy nieco przykład
tam umieszczony i dodamy kilka dodatkowych zmiennych niezależnych.

2.1. Przykład z trzema zmiennymi niezależnymi (wieloraka
regresja liniowa)
Załóżmy, że mamy następujący zbiór danych:

1 2 1 12

2 1 2 10

3 3 1 19

4 2 3 16

1 4 2 17

Tabela 2.1. Zbiór danych do regresji liniowej z trzema zmiennymi niezależnymi

Model regresji liniowej będzie wówczas wyglądał następująco:

Wprowadźmy teraz zmiany w listingu 1.1 z poprzedniego rozdziału, tak aby uwzględnić powyższą
modyfikację. W miejsce programistycznej zmiennej a wprowadzimy zmienne a1, a2 i a3 oraz
zmodyfikujemy kod tak, aby można było na ich podstawie obliczyć gradient.

Po wspomnianych wyżej zmianach kod, który implementuje teraz wieloraką regresję liniową, wygląda
następująco:

NOTE

Używam sformułowania "zmienna programistyczna", aby odróżnić je od zmiennych
matematycznych (niezależnych i zależnych) używanych w opisie modelu.



// Set the hyperparameters for the model

22 / 96

const float LearningRate = 0.0005f;
const int Iterations = 35_000;
const int PrintEvery = 1_000;

// Prepare training data
// Each inner array represents a sample: [x1, x2, x3, y]
// We will try to find the relationship: y = 2*x1 + 3*x2 - 1*x3 + 5

float[,] data = new float[,] {
 {1, 2, 1, 12}, // y = 2*1 + 3*2 - 1*1 + 5 = 12
 {2, 1, 2, 10}, // etc.
 {3, 3, 1, 19},
 {4, 2, 3, 16},
 {1, 4, 2, 17}
};

// 1. Initialize model parameters

// Coefficients for the independent variables (x1, x2, x3) and the bias term
float a1 = 0, a2 = 0, a3 = 0;
float b = 0;

// Number of samples
int n = data.GetLength(0);

// 2. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{
 // Initialize accumulators for errors and gradients for this iteration
 float sumSquaredError = 0;
 float sumErrorForA1 = 0;
 float sumErrorForA2 = 0;
 float sumErrorForA3 = 0;
 float sumErrorForB = 0;

 // For each sample in the data
 for (int row = 0; row < n; row++)
 {
 // Get the independent variables (features) and the dependent variable (target)
 float x1 = data[row, 0];
 float x2 = data[row, 1];
 float x3 = data[row, 2];
 float y = data[row, 3];

 // Prediction and error calculation

23 / 96

Listing 2.1. Wieloraka regresja liniowa z trzema zmiennymi niezależnymi

 float prediction = a1 * x1 + a2 * x2 + a3 * x3 + b;
 float error = prediction - y;

 // Accumulate squared error for MSE calculation
 sumSquaredError += error * error;

 // Accumulate parts needed for gradient calculation
 sumErrorForA1 += error * x1;
 sumErrorForA2 += error * x2;
 sumErrorForA3 += error * x3;
 sumErrorForB += error;
 }

 // Calculate gradients (partial derivatives of MSE)
 // ∂MSE/∂a1 = 2/n * Σ(error * x1)
 float deltaA1 = 2.0f / n * sumErrorForA1;
 float deltaA2 = 2.0f / n * sumErrorForA2;
 float deltaA3 = 2.0f / n * sumErrorForA3;
 float deltaB = 2.0f / n * sumErrorForB;

 // Update regression parameters using gradient descent
 a1 -= LearningRate * deltaA1;
 a2 -= LearningRate * deltaA2;
 a3 -= LearningRate * deltaA3;
 b -= LearningRate * deltaB;

 if (iteration % PrintEvery == 0)
 {
 // MSE
 float meanSquaredError = sumSquaredError / n;

 Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | a1:
{a1,8:F4} | a2: {a2,8:F4} | a3: {a3,8:F4} | b: {b,8:F4}");
 }
}

// 3. Output learned parameters

Console.WriteLine("\n--- Training Complete (Variables) ---");
Console.WriteLine($"{"Learned parameters:",-20} a1 = {a1,9:F4} | a2 = {a2,9:F4} | a3 =
{a3,9:F4} | b = {b,9:F4}");
Console.WriteLine($"{"Expected parameters:",-20} a1 = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

24 / 96

Efekt działania programu z listingu 2.1 przedstawiony został na poniższej ilustracji:

Rysunek 2.1. Wyniki regresji liniowej z trzema zmiennymi niezależnymi

Widzimy, że po wykonaniu założonej liczby iteracji (Iterations = 35_000) wyliczone zostały parametry
regresji liniowej , , oraz . Są one zbliżone do oczekiwanych wartości , ,
oraz .

2.2. Tablice zamiast pojedynczych zmiennych
Na listingu 2.1 pojawiły się kolejne zmienne, które odpowiadają za obliczanie predykcji, błędów i
gradientów. Zamiast x, a, sumErrorValue i deltaA mamy teraz x1, x2, x3, a1, a2, a3, sumErrorForA1,
sumErrorForA2, sumErrorForA3, deltaA1, deltaA2 i deltaA3. Jak łatwo można się domyśleć, przy każdym
nowym współczynniku musielibyśmy dodawać kolejne odpowiadające mu zmienne do kodu.

Aby tego uniknąć, możemy użyć tablic. Wówczas zamiast operowania na każdej trójce zmiennych
programistycznych, np. a1, a2, a3, będziemy operować na pojedynczych tablicach.

NOTE

Kod źródłowy przykładów zawartych w niniejszym rozdziale znajduje się na GitHub .


https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/MultipleLinearRegression/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/MultipleLinearRegression/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/MultipleLinearRegression/Program.cs

25 / 96

Propozycja takiego rozwiązania jest następująca (pominięto części wspólne - stałe i inne deklaracje -
zamieszczone w poprzednim listingu):

// 1. Initialize model parameters

// Number of samples and coefficients
int n = data.GetLength(0);
int numCoefficients = data.GetLength(1) - 1;

// Coefficients for the independent variables and the bias term
float[] a = new float[numCoefficients];
float b = 0;

// 2. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{
 // Initialize accumulators for errors and gradients for this iteration
 float sumSquaredError = 0;
 float[] sumErrorForA = new float[numCoefficients]; // Accumulator for each coefficient's
gradient part
 float sumErrorForB = 0; // Accumulator for the bias's gradient part

 // For each sample in the data
 for (int row = 0; row < n; row++)
 {
 // Separate the independent variables (features) (x) from the dependent variable
(target) (y)
 float[] x = new float[numCoefficients];
 for (int i = 0; i < numCoefficients; i++)
 {
 x[i] = data[row, i];
 }
 float y = data[row, numCoefficients];

 // Prediction and error calculation
 // prediction = a1*x1 + a2*x2 + a3*x3 + b
 float prediction = b;
 for (int i = 0; i < numCoefficients; i++)
 {
 prediction += a[i] * x[i];
 }
 float error = prediction - y;

 // Accumulate squared error for MSE calculation

26 / 96

 sumSquaredError += error * error;

 // Accumulate parts needed for gradient calculation
 // For each ai, the gradient part is (error * xi)
 for (int i = 0; i < numCoefficients; i++)
 {
 sumErrorForA[i] += error * x[i];
 }
 // For the bias, the gradient part is just the error
 sumErrorForB += error;
 }

 // Calculate gradients (partial derivatives of MSE)
 // ∂MSE/∂ai = 2/n * Σ(error * xi)
 float[] deltaA = new float[numCoefficients];
 for (int i = 0; i < numCoefficients; i++)
 {
 deltaA[i] = 2.0f / n * sumErrorForA[i];
 }

 // ∂MSE/∂b = 2/n * Σ(error)
 float deltaB = 2.0f / n * sumErrorForB;

 // Update regression parameters using gradient descent
 for (int i = 0; i < numCoefficients; i++)
 {
 a[i] -= LearningRate * deltaA[i];
 }
 b -= LearningRate * deltaB;

 if (iteration % PrintEvery == 0)
 {
 // MSE
 float meanSquaredError = sumSquaredError / n;

 Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | a1:
{a[0],8:F4} | a2: {a[1],8:F4} | a3: {a[2],8:F4} | b: {b,8:F4}");
 }
}

// 3. Output learned parameters

Console.WriteLine("\n--- Training Complete (Tables) ---");
Console.WriteLine($"{"Learned parameters:",-20} a1 = {a[0],9:F4} | a2 = {a[1],9:F4} | a3 =
{a[2],9:F4} | b = {b,9:F4}");

27 / 96

Listing 2.2. Wieloraka regresja liniowa z trzema zmiennymi niezależnymi - wersja z wykorzystaniem tablic

Efekt działania tego programu (rysunek 2.2) jest taki sam jak poprzednio (rysunek 2.1), ale kod jest
krótszy, no i oczywiście bardziej elastyczny. Wystarczy zmienić liczbę kolumn w tablicy data, aby - w
miarę potrzeb - dodać lub usunąć zmienne niezależne.

Rysunek 2.2. Wyniki regresji liniowej z trzema zmiennymi niezależnymi - wersja z wykorzystaniem tablic

2.3. Zamiast tablic - macierze
Kolejnym krokiem w naszej wędrówce po regresji wielorakiej będzie wykorzystanie macierzy. Zamiast
tablic jednowymiarowych użyjemy tablic dwuwymiarowych (macierzy), a co za tym idzie zamiast działań
na skalarach (poszczególnych elementach tablicy) będziemy wykonywać działania na macierzach
(operacje macierzowe).

Poniżej znajduje się opis operacji macierzowych, które na potrzeby niniejszego rozdziału
zaimplementowano w klasie ArrayExtensions:

Add: dodaje wartość skalarną do każdej komórki macierzy;
Mean: oblicza średnią wszystkich komórek macierzy;
Multiply: mnoży każdą komórkę macierzy przez wartość skalarną;

Console.WriteLine($"{"Expected parameters:",-20} a1 = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

28 / 96

MultiplyDot: mnoży macierz przez inną macierz przy użyciu iloczynu skalarnego (dot product);
Power: podnosi każdą komórkę macierzy do potęgi;
Subtract: odejmuje wartości z drugiej macierzy od pierwszej;
Sum: oblicza sumę wszystkich komórek macierzy;
Transpose: transponuje macierz, zamieniając wiersze na kolumny i odwrotnie.

Tak wygląda kod implementujący budowę modelu wielorakiej regresji liniowej z wykorzystaniem
macierzy:

NOTE

Kod źródłowy klasy ArrayExtensions znajduje się na GitHub a także w Dodatku na końcu
rozdziału.



// 1. Convert data to matrices

// Number of samples and coefficients
int n = data.GetLength(0);
int numCoefficients = data.GetLength(1) - 1;

float[,] X = new float[n, numCoefficients];
float[,] Y = new float[n, 1];

// Prepare the feature matrix X and the target vector Y
for (int row = 0; row < n; row++)
{
 for (int j = 0; j < numCoefficients; j++)
 {
 X[row, j] = data[row, j];
 }
 Y[row, 0] = data[row, numCoefficients];
}

// 2. Initialize model parameters

// Coefficients for the independent variables and the bias term
float[,] A = new float[numCoefficients, 1];
float b = 0;

// 3. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{

https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs

29 / 96

Listing 2.3. Wieloraka regresja liniowa z trzema zmiennymi niezależnymi - wersja z wykorzystaniem
macierzy

Główne zmiany w stosunku do poprzednich wersji:

Zamiast tablicy data mamy teraz dwie macierze: X (z niezależnymi zmiennymi) i Y (z zależną
zmienną).

 // Prediction and error calculation

 // Make predictions for all samples at once: predictions = X * a + b
 float[,] predictions = X.MultiplyDot(A).Add(b);

 // Calculate errors for all samples: errors = predictions - Y
 float[,] errors = predictions.Subtract(Y);

 // Calculate the gradient for the coefficients 'a': ∂MSE/∂a = 2/n * X^T * errors
 // X.Transpose() aligns features with their corresponding errors for the dot product
 // We can pre-calculate X.Transpose() and (2.0f / n) for efficiency, but let's leave it
as is for clarity
 float[,] deltaA = X.Transpose().MultiplyDot(errors).Multiply(2.0f / n);

 // ∂MSE/∂b = 2/n * sum(errors)
 float deltaB = 2.0f / n * errors.Sum();

 // Update regression parameters using gradient descent
 A = A.Subtract(deltaA.Multiply(LearningRate));
 b -= LearningRate * deltaB;

 if (iteration % PrintEvery == 0)
 {
 // Calculate the Mean Squared Error loss: MSE = mean(errors^2)
 float meanSquaredError = errors.Power(2).Mean();

 Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | a1:
{A[0, 0],8:F4} | a2: {A[1, 0],8:F4} | a3: {A[2, 0],8:F4} | b: {b,8:F4}");
 }
}

// 4. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices) ---");
Console.WriteLine($"{"Learned parameters:",-20} a1 = {A[0, 0],9:F4} | a2 = {A[1, 0],9:F4} |
a3 = {A[2, 0],9:F4} | b = {b,9:F4}");
Console.WriteLine($"{"Expected parameters:",-20} a1 = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

30 / 96

Współczynniki regresji są teraz przechowywane w macierzy A, która ma rozmiar numCoefficients x
1.
Obliczenia predykcji, błędów i gradientów są wykonywane na całych macierzach.
Usunięcie pętli foreach (iteracji po poszczególnych obserwacjach) na rzecz operacji macierzowych,
co sprawia, że kod jest bardziej zwięzły i czytelny.

I jeszcze jedna uwaga na temat powyższego programu. Wyrażenie
X.Transpose().MultiplyDot(errors).Multiply(2.0f / n) to odpowiednik wzoru na gradient zapisanego
w notacji macierzowej (porównaj wzór 1.10 z poprzedniego rozdziału):

Skąd bierze się transpozycja macierzy X ()? Jest ona niezbędna, aby wymiary (wiersze x kolumny)
macierzy się zgadzały. Mnożąc macierz cech po transpozycji (k x n, gdzie k to liczba cech, a n to liczba
próbek) przez wektor błędów (n x 1), otrzymujemy wektor gradientów (k x 1), w którym każdy element
odpowiada gradientowi dla jednego współczynnika a.

2.4. Jeszcze prościej? Włączenie wyrazu wolnego do
macierzy
Zauważmy, że wyraz wolny b wciąż jest oddzielną zmienną. Możemy go włączyć do macierzy
współczynników A, stosując pewną sztuczkę: dodajemy do naszej macierzy danych X dodatkową kolumnę
wypełnioną jedynkami.

Dzięki temu wyraz wolny b stanie się kolejnym współczynnikiem regresji, a my nie będziemy musieli go
już osobno obsługiwać w kodzie. Poniżej znajduje się zmodyfikowany kod według tego podejścia:

// 1. Convert data to matrices with a bias term

// Number of samples and coefficients
int n = data.GetLength(0);
int numCoefficients = data.GetLength(1) - 1;

float[,] XAnd1 = new float[n, numCoefficients + 1]; // +1 column for bias term
float[,] Y = new float[n, 1];

// Prepare the feature matrix XAnd1 with the bias term and the target vector Y
for (int row = 0; row < n; row++)
{
 for (int j = 0; j < numCoefficients; j++)
 {
 XAnd1[row, j] = data[row, j];
 }

31 / 96

 XAnd1[row, numCoefficients] = 1; // Bias term
 Y[row, 0] = data[row, numCoefficients];
}

// 2. Initialize model parameters

// Coefficients for the independent variables and the bias term
float[,] AB = new float[numCoefficients + 1, 1];

// 3. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{
 // Prediction and error calculation

 // Make predictions for all samples at once: predictions = XAnd1 * AB
 float[,] predictions = XAnd1.MultiplyDot(AB);

 // Calculate errors for all samples: errors = predictions - Y
 float[,] errors = predictions.Subtract(Y);

 // Calculate the gradient for the coefficients 'AB': ∂MSE/∂AB = 2/n * XAnd1^T * errors
 // XAnd1.Transpose() aligns features and the additional column for the bias term with
their corresponding errors for the dot product
 // We can pre-calculate XAnd1.Transpose() and (2.0f / n) for efficiency, but let's leave
it as is for clarity
 float[,] deltaAB = XAnd1.Transpose().MultiplyDot(errors).Multiply(2.0f / n);

 // Update regression parameters using gradient descent
 AB = AB.Subtract(deltaAB.Multiply(LearningRate));

 if (iteration % PrintEvery == 0)
 {
 // Calculate the Mean Squared Error loss: MSE = mean(errors^2)
 float meanSquaredError = errors.Power(2).Mean();

 Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | a1:
{AB[0, 0],8:F4} | a2: {AB[1, 0],8:F4} | a3: {AB[2, 0],8:F4} | b: {AB[3, 0],8:F4}");
 }
}

// 4. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices with Bias) ---");
Console.WriteLine($"{"Learned parameters:",-20} a1 = {AB[0, 0],9:F4} | a2 = {AB[1, 0],9:F4}
| a3 = {AB[2, 0],9:F4} | b = {AB[3, 0],9:F4}");

32 / 96

Listing 2.4. Wieloraka regresja liniowa z trzema zmiennymi niezależnymi - wersja z włączonym wyrazem
wolnym do macierzy

2.5. Podsumowanie
W tym rozdziale omówiliśmy, jak można wykorzystać macierze do implementacji wielorakiej regresji
liniowej. Zaczęliśmy od prostego przykładu z trzema zmiennymi niezależnymi, a następnie przeszliśmy
do bardziej zaawansowanych technik, takich jak użycie tablic i macierzy do przechowywania danych i
współczynników regresji. Za wisienkę 🍒 na torcie 🍰 uznaliśmy włączenie wyrazu wolnego do macierzy
🫡.

2.6. Dodatek
Poniżej znajduje się kod źródłowy klasy ArrayExtensions, w zakresie, który obejmuje implementację
operacji macierzowych użytych w powyższym przykładzie. Miłego kompilowania!

Console.WriteLine($"{"Expected parameters:",-20} a1 = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

NOTE

Odpowiednik powyższego kodu dla Delphi Object Pascal można znaleźć tutaj.


public static class ArrayExtensions
{
 /// <summary>
 /// Adds a scalar value to each element of the matrix.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] Add(this float[,] source, float scalar)
 {
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < columns; col++)
 {
 res[row, col] = source[row, col] + scalar;
 }
 }

33 / 96

 return res;
 }

 /// <summary>
 /// Calculates the mean of all elements in the matrix.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float Mean(this float[,] source)
 => source.Sum() / source.Length;

 /// <summary>
 /// Multiplies each element of the matrix by a scalar value.
 /// </summary>
 /// <remarks>
 /// Complexity: O(n * m), where n = rows of <paramref name="source"/>, m = columns of
<paramref name="source"/>
 /// </remarks>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] Multiply(this float[,] source, float scalar)
 {
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < columns; col++)
 {
 res[row, col] = source[row, col] * scalar;
 }
 }

 return res;
 }

 /// <summary>
 /// Multiplies the current matrix with another matrix using the dot product.
 /// </summary>
 /// <remarks>
 /// Complexity: O(n * m * p), where n = rows of <paramref name="source"/>, m = shared
dimension, p = columns of <paramref name="matrix"/>
 /// </remarks>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] MultiplyDot(this float[,] source, float[,] matrix)
 {
 Debug.Assert(source.GetLength(1) == matrix.GetLength(0));

34 / 96

 int matrixColumns = matrix.GetLength(1);

 int rows = source.GetLength(0);
 int columns = source.GetLength(1);

 float[,] res = new float[rows, matrixColumns];

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < matrixColumns; j++)
 {
 float sum = 0;
 for (int k = 0; k < columns; k++)
 {
 sum += source[i, k] * matrix[k, j];
 }
 res[i, j] = sum;
 }
 }

 return res;
 }

 /// <summary>
 /// Raises each element of the matrix to the specified power.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] Power(this float[,] source, int scalar)
 {
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < columns; col++)
 {
 res[row, col] = MathF.Pow(source[row, col], scalar);
 }
 }

 return res;
 }

 /// <summary>

35 / 96

 /// Subtracts the elements of the specified matrix from the current matrix.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] Subtract(this float[,] source, float[,] matrix)
 {
 Debug.Assert(source.GetLength(0) == matrix.GetLength(0));
 Debug.Assert(source.GetLength(1) == matrix.GetLength(1));

 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 res[i, j] = source[i, j] - matrix[i, j];
 }
 }

 return res;
 }

 /// <summary>
 /// Calculates the sum of all elements in the matrix.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float Sum(this float[,] source)
 {
 // Sum over all elements.
 float sum = 0;
 int rows = source.GetLength(0);
 int cols = source.GetLength(1);

 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < cols; col++)
 {
 sum += source[row, col];
 }
 }

 return sum;
 }

 /// <summary>

36 / 96

Listing 2.5. Klasa ArrayExtensions implementująca operacje macierzowe

Created: 2025-06-28

Last modified: 2025-12-22

Title: 2. Po co nam macierze?

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze]

 /// Transposes the matrix by swapping its rows and columns.
 /// </summary>
 [MethodImpl(MethodImplOptions.AggressiveInlining)]
 public static float[,] Transpose(this float[,] source)
 {
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);

 float[,] array = new float[columns, rows];

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 array[j, i] = source[i, j];
 }
 }

 return array;
 }
}

37 / 96

3. Dane Boston Housing
W niniejszym rozdziale zajmiemy się analizą danych rzeczywistych pochodzących ze zbioru Boston
Housing (GitHub). Posłużymy w tym celu omówioną już wcześniej wieloraką regresję liniową.

Aby zbadać jakość utworzonego modelu regresji, podzielimy zbiór dostępnych danych na zbiór uczący i
zbiór testowy (na którym ocenimy jakość predykcji).

W rozdziale kolejnym przeprowadzimy analogiczne badanie, korzystając z samodzielnie skonstruowanej
prostej sieci neuronowej. Następnie porównamy wyniki obu metod – jakość predykcji generowanych
przez sieć neuronową zestawimy z wynikami otrzymanymi z modelu regresji przy identycznym podziale
danych (trening/test).

3.1. Zbiór danych Boston Housing
Zbiór Boston Housing zawiera informacje o cenach domów w różnych dzielnicach Bostonu oraz cechach
tych dzielnic, które mogą wpływać na ceny nieruchomości. Zbiór ten jest często wykorzystywany do
celów edukacyjnych i badawczych w dziedzinie uczenia maszynowego i statystyki. Składa się on z 506
rekordów (próbek), z których każdy zawiera 13 cech (zmiennych niezależnych) oraz jedną zmienną
docelową (mediana cen domów [tys. USD]). Dokładniejszy opis znajduje się tu .

Poniżej przedstawiono pierwszych 20 rekordów z tego zbioru:

https://github.com/kowaliszyn-pl/ml-csharp/blob/master/data/Boston/BostonHousing.csv
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/data/Boston/BostonHousing.csv
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/data/Boston/BostonHousing.csv
https://www.cs.toronto.edu/%7Edelve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/%7Edelve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/%7Edelve/data/boston/bostonDetail.html

38 / 96

Rysunek 3.1. Pierwsze rekordy ze zbioru Boston Housing

3.2. Wieloraka regresja liniowa
Wykorzystajmy kod przedstawiony w poprzednim rozdziale do implementacji wielorakiej regresji liniowej
z użyciem macierzy na omawianym zbiorze danych. Implementację tę przedstawia poniższy listing (pełna
wersja znajduje się na GitHub):

// Define hyperparameters for both routines

const float LearningRate = 0.0005f;

https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs

39 / 96

const int Iterations = 48_000;
const int PrintEvery = 2_000;
const float TestSplitRatio = 0.7f;
const int RandomSeed = 251113;

// 1. Get data

(float[,] trainData, float[,] testData) = GetData();

// 2. Copy trainData and testData to matrices with bias term

int inputFeatureCount = trainData.GetLength(1) - 1;
int nTrain = trainData.GetLength(0);
int nTest = testData.GetLength(0);

float[,] XTrainAnd1 = new float[nTrain, inputFeatureCount + 1];
float[,] YTrain = new float[nTrain, 1];

float[,] XTestAnd1 = new float[nTest, inputFeatureCount + 1];
float[,] YTest = new float[nTest, 1];

// Prepare feature matrix XTrainAnd1 with bias term and target vector YTrain
for (int i = 0; i < nTrain; i++)
{
 for (int j = 0; j < inputFeatureCount; j++)
 {
 XTrainAnd1[i, j] = trainData[i, j];
 }

 // Add bias term
 XTrainAnd1[i, inputFeatureCount] = 1;

 // Target values
 YTrain[i, 0] = trainData[i, inputFeatureCount];
}

// Prepare feature matrix XTestAnd1 with bias term and target vector YTest
for (int i = 0; i < nTest; i++)
{
 for (int j = 0; j < inputFeatureCount; j++)
 {
 XTestAnd1[i, j] = testData[i, j];
 }

 // Add bias term
 XTestAnd1[i, inputFeatureCount] = 1;

40 / 96

 // Target values
 YTest[i, 0] = testData[i, inputFeatureCount];
}

// 3. Initialize model parameters

// Coefficients for our independent variables and the bias term initialized to zero
float[,] AB = new float[inputFeatureCount + 1, 1];

// 4. Training loop

float[,] XTrainAnd1T = XTrainAnd1.Transpose();
float twoOverN = 2.0f / nTrain;
for (int iteration = 1; iteration <= Iterations; iteration++)
{
 // Prediction and error calculation

 // Make predictions for all samples at once: predictions = XTrainAnd1 * AB
 float[,] predictions = XTrainAnd1.MultiplyDot(AB);

 // Calculate errors for all samples: errors = predictions - YTrain
 float[,] errors = predictions.Subtract(YTrain);

 // Calculate gradient for coefficients 'AB': ∂MSE/∂AB = 2/n * XTrainAnd1^T * errors
 float[,] deltaAB = XTrainAnd1T.MultiplyDot(errors).Multiply(twoOverN);

 // Update regression parameters using gradient descent
 AB = AB.Subtract(deltaAB.Multiply(LearningRate));

 if (iteration % PrintEvery == 0)
 {
 // Calculate the Mean Squared Error loss: MSE = mean(errors^2)
 float meanSquaredError = errors.Power(2).Mean();

 if (float.IsNaN(meanSquaredError))
 {
 Console.WriteLine($"NaN detected at iteration {iteration}");
 break;
 }

 Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | a1:
{AB[0, 0],8:F4} | a2: {AB[1, 0],8:F4} | a3: {AB[2, 0],8:F4} | ... | b:
{AB[inputFeatureCount, 0],8:F4}");
 }
}

41 / 96

Listing 3.1. Wieloraka regresja liniowa z użyciem macierzy na zbiorze danych Boston Housing

// 5. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices with Bias on Boston Data) ---");
Console.WriteLine("Learned parameters:");

for (int i = 0; i < inputFeatureCount; i++)
{
 Console.WriteLine($" a{i + 1,-2} = {AB[i, 0],8:F4}");
}
Console.WriteLine($" b = {AB[inputFeatureCount, 0],8:F4}");

Console.WriteLine();
Console.WriteLine("Sample predictions vs actual values:");
Console.WriteLine();
Console.WriteLine($"{"Sample No",14}{"Predicted",14}{"Actual",14}");
Console.WriteLine();

// Show predictions for the test set

int[] showTestSamples = { 0, 1, 2, nTest - 3, nTest - 2, nTest - 1 };
float[,] testPredictions = XTestAnd1.MultiplyDot(AB);

for (int i = 0; i < showTestSamples.Length; i++)
{
 int testSampleIndex = showTestSamples[i];
 float predicted = testPredictions[testSampleIndex, 0];
 float actual = YTest[testSampleIndex, 0];
 Console.WriteLine(
 $"{testSampleIndex + 1,14}" +
 $"{predicted,14:F4}" +
 $"{actual,14:F4}"
);
}

// Show MSE for test data

float[,] testErrors = YTest.Subtract(testPredictions);
float testMeanSquaredError = testErrors.Power(2).Mean();
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine($"\nMSE on test data: {testMeanSquaredError:F5}");
Console.ResetColor();

42 / 96

3.2.1. Pobieranie, standaryzowanie, i permutacja danych oraz ich
podział na zbiór uczący i zbiór testowy
W powyższym listingu znalazła się linia (float[,] trainData, float[,] testData) = GetData(), która
odpowiada za pobranie i przygotowanie danych do analizy. Wywołuje ona funkcję pokazaną na listingu
3.2:

Listing 3.2. Funkcja pobierająca, standaryzująca, permutująca i dzieląca dane Boston Housing na zbiór
uczący i testowy

Jak widzimy, powyższy kod:

ładuje dane z pliku CSV,
standaryzuje cechy wejściowe (zmienne niezależne),
losowo permutuje dane,
dzieli dane na zbiór uczący i testowy według określonego stosunku.

3.2.2. Standaryzacja cech wejściowych
Zwróćmy uwagę na wywołanie w powyższej procedurze metody
bostonData.Standardize(0..numCoefficients), która standaryzuje cechy wejściowe (zmienne niezależne)
do średniej 0 i odchylenia standardowego 1. Standaryzacja danych jest istotnym etapem przygotowania
danych do trenowania modeli uczenia maszynowego, zwłaszcza algorytmów opartych na optymalizacji
gradientowej, ponieważ sprzyja szybszej i bardziej stabilnej konwergencji.

static (float[,] TrainData, float[,] TestData) GetData()
{
 float[,] bostonData = LoadCsv("..\\..\\..\\..\\..\\data\\Boston\\BostonHousing.csv");

 // Number of independent variables
 int inputFeatureCount = bostonData.GetLength(1) - 1;

 // Standardize each feature column (mean = 0, stddev = 1) except the target variable
(last column)
 // Note: the upper bound in Range is exclusive, so we use inputFeatureCount to exclude
the last column
 bostonData.Standardize(0..inputFeatureCount);

 // Permute the data randomly
 bostonData.PermuteInPlace(RandomSeed);

 // Return train and test data split by ratio
 return bostonData.SplitRowsByRatio(TestSplitRatio);
}

43 / 96

Konwergencja algorytmu optymalizacyjnego to proces, w którym algorytm poprzez iteracyjne
aktualizacje parametrów stopniowo zbliża się do optymalnego rozwiązania, czyli minimum funkcji straty.
Standaryzacja danych ułatwia ten proces, ponieważ gdy cechy mają porównywalne skale, funkcja straty
ma lepsze własności geometryczne, co pozwala algorytmowi unikać zbyt dużych lub zbyt małych kroków
aktualizacji parametrów.

W naszym wypadku, kod metody Standardize wygląda następująco:

public static void Standardize(this float[,] source, Range? columnRange = null)
{
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);

 int beginColumn, endColumn;

 if (columnRange is not null)
 {
 var (offset, length) = columnRange.Value.GetOffsetAndLength(columns);
 beginColumn = offset;
 endColumn = beginColumn + length;
 }
 else
 {
 beginColumn = 0;
 endColumn = columns;
 }

 for (int col = beginColumn; col < endColumn; col++)
 {
 // Calculate mean
 float sum = 0;
 for (int row = 0; row < rows; row++)
 {
 sum += source[row, col];
 }
 float mean = sum / rows;

 // Calculate standard deviationFromMean
 float sumOfSquares = 0;
 for (int row = 0; row < rows; row++)
 {
 float value = source[row, col] - mean;
 sumOfSquares += value * value;
 }
 float stdDev = MathF.Sqrt(sumOfSquares / rows);

44 / 96

Listing 3.3. Metoda standaryzująca kolumny macierzy do średniej 0 i odchylenia standardowego 1

Metoda ta oblicza średnią i odchylenie standardowe dla każdej kolumny w całym lub w określonym
zakresie (Range? columnRange), a następnie standaryzuje wartości w tej kolumnie.

3.2.2.1. Szybsza metoda obliczania odchylenia standardowego
Korzystając z własności wariancji, możemy obliczyć odchylenie standardowe nieco szybciej, bez
konieczności dwukrotnego przechodzenia przez dane. Wariancja jest zdefiniowana jako średnia
kwadratów różnic wartości od średniej:

Powyższy wzór można przekształcić do postaci:

umożlwiając wyliczenie wariancji w pojedynczym przebiegu przez dane (single pass), w którym obliczamy
sumę wartości (do obliczenia średniej) i sumę kwadratów wartości (do obliczenia średniej z kwadratów

 if (stdDev == 0)
 {
 stdDev = 1; // To avoid division by zero
 }

 // Standardize values
 for (int row = 0; row < rows; row++)
 {
 source[row, col] = (source[row, col] - mean) / stdDev;
 }
 }
}

45 / 96

wartości). Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji.

Oto przykładowa implementacja wersji single pass (pełen listing można znaleźć na GitHub):

Listing 3.4. Szybsza metoda obliczania odchylenia standardowego z wykorzystaniem własności wariancji ze
wzoru (3.2)

3.2.3. Efekt działania regresji liniowej na zbiorze Boston Housing
Poniżej przedstawiono efekt działania programu. Widzimy, że w trakcie treningu modelu wartość funkcji
straty (MSE) stopniowo maleje, co wskazuje na to, że model uczy się dopasowywać do danych
treningowych.

// Calculate standard deviation in a single pass
float sum = 0, sumOfSquares = 0;
for (int row = 0; row < rows; row++)
{
 float value = source[row, col];
 sum += value;
 sumOfSquares += value * value;
}
float mean = sum / rows;
float variance = (sumOfSquares / rows) - (mean * mean);
float stdDev = MathF.Sqrt(variance);

NOTE

Podnoszenie do kwadratu realizujemy poprzez mnożenie value * value, zamiast użycia funkcji
MathF.Pow(value, 2), ponieważ mnożenie jest szybsze niż wywołanie funkcji potęgowania.



https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Core/ArrayExtensions.cs

46 / 96

Rysunek 3.2. Wyniki wielorakiej regresji liniowej na zbiorze Boston Housing

Dla zbioru uczącego wartość funkcji straty po 48 000 iteracjach wynosi MSE = 19.43581, co oznacza, że
taki jest średni błąd kwadratowy między przewidywanymi a rzeczywistymi cenami domów. Wyświetlane
są również wyuczone parametry regresji (współczynniki a1, a2, ..., a13 oraz wyraz wolny b). Największy (co
do wartości bezwzględnej) wpływ na cenę posiada cecha a13 = -3.8503, co dla danych Boston Housing
odpowiada zmiennej LSTAT (procent populacji o niskich dochodach).

Dla zbioru testowego MSE wynosi MSE = 29.49182, co jest wyższą wartością niż dla zbioru uczącego.

W kolejnym rozdziale zobaczymy jak z tym samym problemem predykcji cen domów na naszym zbiorze
danych poradzi sobie sieć neuronowa.

Created: 2025-11-09

47 / 96

Last modified: 2025-12-22

Title: 3. Dane Boston Housing

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze] [Boston Housing] [Standaryzacja danych]

48 / 96

4. Pierwsza sieć neuronowa
W poprzednim rozdziale utworzyliśmy model wielorakiej regresji liniowej i zbadaliśmy jakość predycji przez ten
model generowanej (MSE) na danych Boston Housing. W tym rozdziale natomiast utworzymy prostą sieć
neuronową i pokażemy sposób, w jaki generuje ona swoje predykcje. Porównamy również sposoby uczenia się
(uaktualniania parametrów) obu modeli. Na koniec porównamy jakość generowania predykcji dla danych, które
nie były wykorzystywane podczas treningu.

4.1. Charakterystyka modeli i obliczanie funkcji straty
Na początek przeprowadźmy porównanie obu modeli. Zobaczmy jak oba modele są zbudowane, jak generują
swoje predykcje oraz jak obliczana jest funkcja straty MSE w obu przypadkach.

4.1.1. Wieloraka regresja liniowa
4.1.1.1. Model
Na rysunku 4.1. przedstawiono schemat modelu wielorakiej regresji liniowej, który zbudowaliśmy w poprzednim
rozdziale.

Rysunek 4.1. Schemat modelu wielorakiej regresji liniowej

Powyższy diagram przedstawia pojedyncze równanie liniowe. Widzimy na nim:

zmienne wejściowe:
parametry modelu (wagi):
wyraz wolny (bias):
wyjście: .

Proces generowania predykcji wygląda następująco:

₁ ₂ ₃ ₁₃
₁ ₂ ₃ ₁₃

49 / 96

Podkreślmy, że w odróżnieniu od tego, co zobaczymy za chwilę, model regresji liniowej charakteryzuje się:

brakiem warstw ukrytych
brakiem funkcji aktywacji (a właściwie funkcją aktywacji liniową o wzorze)
wyjściem będącym jedynie kombinacją liniową wejść
możliwością wyuczenia jedynie relacji liniowych

4.1.1.2. Obliczanie funkcji straty
Dowiedzieliśmy się już (z listingu 2.3), że w przypadku wielorakiej regresji liniowej obliczanie MSE wygląda
następująco:

Listing 4.1. Obliczanie MSE dla wielorakiej regresji liniowej

gdzie X to macierz cech wejściowych, A to wektor współczynników regresji, b to wyraz wolny, a Y to wektor
wartości docelowych.

Matematycznie zapisalibyśmy to jako:

gdzie to macierz predykcji, to macierz błędów (różnic) między rzeczywistymi wartościami docelowymi a
przewidywaniami regresji , a to liczba próbek.

4.1.2. Sieć neuronowa
Porównajmy to teraz z siecią neuronową.

4.1.2.1. Model
Na rysunku 4.2. przedstawiono schemat prostej sieci neuronowej z jedną warstwą ukrytą.

float[,] predictions = X.MultiplyDot(A).Add(b);
float[,] errors = predictions.Subtract(Y);
float meanSquaredError = errors.Power(2).Mean();

50 / 96

Rysunek 4.2. Schemat prostej sieci neuronowej z jedną warstwą ukrytą

Powyższy model składa się z:

warstwy wejściowej (takiej samej jak w regresji:)
warstwy ukrytej (pierwszej, z czterema neuronami o wyjściach)
warstwy wyjściowej (drugiej, z jednym neuronem o wyjściu - analogicznie do modelu regresji liniowej)

Na rysunku zaznaczono również parametry modelu:

wagi i łączące warstwę wejściową z warstwą ukrytą oraz warstwę ukrytą z warstwą wyjściową
biasy (wyrazy wolne) i dla warstwy ukrytej i wyjściowej

4.1.2.2. Obliczanie funkcji straty
Zobaczmy teraz jak wygląda obliczanie MSE w przypadku naszej sieci neuronowej. Oto odpowiedni fragment
kodu:

₁ ₂ ₃ ₁₃
₁ ₂ ₃ ₄

/*
 W1 - weights for the first layer [inputSize (no of columns/attributes of X) x hiddenSize]
 W2 - weights for the second layer [hiddenSize x 1]
 B1 - bias for the first layer (for every neuron in the first layer)
 b2 - bias for the second layer (there is only one neuron in the second layer)
 M1 - input multiplied by W1
 N1 - input multiplied by W1 plus B1
 O1 - result of the activation function applied to (input multiplied by W1 plus B1)
 M2 - result of O1 (result of the activation function from the first layer) multiplied by W2
 predictions - (M2 + b2)

51 / 96

Listing 4.2. Obliczanie MSE dla prostej sieci neuronowej

gdzie:

X to macierz cech wejściowych,
W1 to macierz wag pierwszej warstwy (ukrytej),
M1 to macierz wyników mnożenia wejść X przez wagi pierwszej warstwy W1,
B1 to wektor biasów pierwszej warstwy,
N1 to macierz wyników dodania biasów B1 do M1,
O1 to macierz wyjść pierwszej warstwy po zastosowaniu funkcji aktywacji sigmoid,
W2 to macierz wag drugiej warstwy (wyjściowej),
M2 to macierz wyników mnożenia wyjść pierwszej warstwy O1 przez wagi drugiej warstwy,
b2 to wyraz wolny drugiej warstwy,
Y to macierz wartości docelowych,
predictions to macierz przewidywanych wartości wyjściowych,
errors to macierz błędów (różnic) między rzeczywistymi wartościami docelowymi Y a przewidywaniami sieci
predictions.

W matematycznym zapisie wygląda to następująco:

 errors - subtract predictions from Y
 meanSquaredError - MSE, mean of errors squared
*/

// The first layer (hidden)
float[,] M1 = X.MultiplyDot(W1);
float[,] N1 = M1.AddRow(B1);
// Apply sigmoid activation function, so we can get O1 - outputs of the first layer
float[,] O1 = N1.Sigmoid();

// The second layer (output)
float[,] M2 = O1.MultiplyDot(W2);
float[,] predictions = M2.Add(b2);

// Calculate errors for all samples: errors = predictions - Y
float[,] errors = predictions.Subtract(Y);

float meanSquaredError = errors.Power(2).Mean();

NOTE

Pełen kod omawiany w tym rozdziale znajduje się na GitHub .

Fragmenty kody, które zostały przeniesione do Delphi Object Pascala znajdują się tu.



https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/BostonHousingML/Program.cs

52 / 96

gdzie:

 to funkcja aktywacji sigmoid,
 to macierz predykcji sieci,
 to macierz błędów między przewidywaniami sieci a rzeczywistymi wartościami docelowymi ,

pozostałe symbole są analogiczne do tych używanych w listingu 4.2, np. oznacza macierz wag pierwszej
warstwy, a to macierz wyjść pierwszej warstwy.

4.1.2.2.1. Funkcja aktywacji
Funkcja aktywacji jest to matematyczna funkcja stosowana w neuronach sieci neuronowej, która wprowadza
nieliniowość do modelu. W naszym przypadku używamy funkcji sigmoid, która jest zdefiniowana wzorem:

Cały proces przebiega następująco:

Najpierw obliczamy ważoną sumę wejść dla każdego neuronu w warstwie ukrytej (mnożenie macierzy X przez
W1 i dodanie biasów B1).
Następnie stosujemy funkcję aktywacji sigmoid do tych sum, aby uzyskać wyjścia warstwy ukrytej O1.
W następnej kolejności obliczamy ważoną sumę wyjść z warstwy ukrytej dla neuronu wyjściowego (mnożenie
O1 przez W2 i dodanie biasu b2).
Na końcu obliczamy błędy i MSE tak samo jak w przypadku regresji liniowej.

Tak wygląda obliczanie predykcji i funkcji straty MSE w naszej prostej sieci neuronowej.

4.2. Spadek gradientowy
Zajmijmy się teraz "drogą powrotną", czyli aktualizacją wag i wyrazów wolnych (biasów) w procesie uczenia się
obu modeli.

4.2.1. Wieloraka regresja liniowa
Jak wiemy z poprzednich rozdziałów, obliczanie gradientów dla wielorakiej regresji liniowej wygląda następująco:

53 / 96

gdzie różnica to macierz błędów.

Programistycznie przekłada się to na poniższy kod:

Listing 4.3. Aktualizacja współczynników regresji liniowej za pomocą metody spadku gradientowego

gdzie deltaA i deltaB to gradienty funkcji straty względem współczynników A i wyrazu wolnego b.

4.2.2. Sieć neuronowa
A jak to wygląda w sieci neuronowej?

Aktualizacja wag i biasów w sieci neuronowej podczas treningu odbywa się - podobnie jak w przypadku regresji
liniowej - z wykorzystaniem metody spadku gradientowego.

4.2.2.1. Reguła łańcuchowa
W przypadku sieci wielowarstwowych obliczanie gradientów związane jest z obliczeniami pochodnych funkcji
złożonych. Jeżeli jakaś wartość wejściowa po przejściu przez dwie warstwy sieci (i) przyjmuje wartość:

to pochodna , obliczana za pomocą reguły łańcuchowej, wyniesie:

Regułę tę można również zapisać w inny sposób:

4.2.2.2. Obliczanie gradientów
Spróbujmy teraz przeprowadzić wyliczenia wszystkich gradientów wykorzystywanych w procesie aktualizacji wag i
biasów naszej sieci neuronowej. Aktualizacje te będą odbywać się wg poniższych wzorów (analog do wzorów
(1.9) i (1.12) z rozdziału o regresji liniowej):

float[,] deltaA = X.Transpose().MultiplyDot(errors).Multiply(2.0f / n);
float deltaB = 2.0f / n * errors.Sum();
A = A.Subtract(deltaA.Multiply(LearningRate));
b -= LearningRate * deltaB;

54 / 96

Jak widać, musimy obliczyć cztery pochodne. Trzy z nich są macierzami: , , , a
czwarta jest skalarem: .

W celu obliczenia tych pochodnych skorzystamy z poniższych wzorów.

4.2.2.2.1. Warstwa wyjściowa
Pochodna funkcji straty MSE względem predykcji jest identyczna, jak w przypadku regresji liniowej (wzory (4.1)
i (4.3)):

Ponieważ (wzory (4.2)), to

gdzie to macierz jedynek o wymiarach zgodnych z wymiarami macierzy .

Kolejny wzór, z którego skorzystamy to wzór na pochodną funkcji straty MSE względem :

Na tej samej podstawie, co wzór (4.8), mamy również:

Ponieważ jest skalarem, a jest macierzą o wymiarach odpowiadających liczbie próbek
treningowych, to w kolejnym wzorze musimy zastosować agregację, aby uzyskać gradient również będący
skalarem. Agregacją tą jest w naszym przypadku sumowanie, ponieważ gradient (wzór
(4.8)) jest już uśredniony względem liczby próbek. Zatem:

Otrzymaliśmy wzór bardzo podobny do wzoru (4.3) dla regresji liniowej.

Kolejna pochodna, którą musimy wyliczyć, to . Ponieważ (wzory (4.2)), to:

https://en.wikipedia.org/wiki/Matrix_of_ones
https://en.wikipedia.org/wiki/Matrix_of_ones
https://en.wikipedia.org/wiki/Matrix_of_ones

55 / 96

Zatem, korzystając z reguły łańcuchowej, mamy:

4.2.2.2.2. Warstwa ukryta
W przypadku warstwy ukrytej będziemy korzystać z poniższych wzorów:

gdzie to macierz jedynek o odpowiednich wymiarach.

W przypadku pochodnej MSE względem biasów warstwy ukrytej () ponownie musimy zastosować agregację,
tym razem w postaci sumowania wartości z każdej z kolumn z osobna, tak aby uzyskać wektor gradientów o
wymiarach zgodnych z liczbą neuronów w warstwie ukrytej.

Liczba kolumn w macierzy będącej iloczynem

jest równa liczbie neuronów w warstwie ukrytej, a liczba wierszy - liczbie próbek treningowych.

Zatem:

56 / 96

gdzie to liczba neuronów w warstwie ukrytej.

4.2.2.3. Implementacja w C#
Programistycznie przekłada się to na poniższy kod (w komentarzach podano wymiary poszczególnych macierzy):

// == The second layer (output) ==

// [nTrain, 1]
float[,] dLdP = errors.Multiply(2.0f / nTrain);

// [nTrain, 1]
float[,] dPdM2 = M2.AsOnes();

// [nTrain, 1]
float[,] dLdM2 = dLdP.MultiplyElementwise(dPdM2);

float dPdBias2 = 1;

// mean([nTrain, 1]) -> scalar
float dLdBias2 = dLdP.Multiply(dPdBias2).Sum();

// [HiddenLayerSize, nTrain]
float[,] dM2dW2 = O1.Transpose();

// [HiddenLayerSize, 1]
float[,] dLdW2 = dM2dW2.MultiplyDot(dLdP);

// == The first layer (hidden) ==

// [1, HiddenLayerSize]
float[,] dM2dO1 = W2.Transpose();

// [nTrain, HiddenLayerSize]
float[,] dLdO1 = dLdM2.MultiplyDot(dM2dO1);

// [nTrain, HiddenLayerSize]
float[,] dO1dN1 = N1.SigmoidDerivative();

// [nTrain, HiddenLayerSize]
float[,] dLdN1 = dLdO1.MultiplyElementwise(dO1dN1);

// [HiddenLayerSize]
float[] dN1dBias1 = B1.AsOnes();

// [nTrain, HiddenLayerSize]
float[,] dN1dM1 = M1.AsOnes();

// [HiddenLayerSize]
float[] dLdBias1 = dN1dBias1.MultiplyElementwise(dLdN1).SumByColumn();

57 / 96

Listing 4.4. Aktualizacja wag i biasów sieci neuronowej za pomocą metody spadku gradientowego

gdzie:

nTrain to liczba próbek treningowych,
HiddenLayerSize to liczba neuronów w warstwie ukrytej,
inputFeatureCount to liczba cech wejściowych.

4.3. Jakość predykcji
Na koniec porównajmy jakość predykcji obu modeli na danych testowych czyli tych, które nie były
wykorzystywane podczas treningu. W tym celu uruchomiliśmy oba modele na tych samych danych i obliczyliśmy
MSE.

4.3.1. Wieloraka regresja liniowa
Poniżej, jako przypomnienie z poprzedniego rozdziału, przedstawiono efekt działania modelu wielorakiej regresji
liniowej na danych testowych:

// [nTrain, HiddenLayerSize]
float[,] dLdM1 = dLdN1.MultiplyElementwise(dN1dM1);

// [inputFeatureCount, nTrain]
float[,] dM1dW1 = XTrainT;

// [inputFeatureCount, HiddenLayerSize]
float[,] dLdW1 = dM1dW1.MultiplyDot(dLdM1);

// Update parameters
W1 = W1.Subtract(dLdW1.Multiply(LearningRate));
W2 = W2.Subtract(dLdW2.Multiply(LearningRate));
B1 = B1.Subtract(dLdBias1.Multiply(LearningRate));
b2 -= dLdBias2 * LearningRate;

58 / 96

Rysunek 4.3. Wynik działania modelu wielorakiej regresji liniowej na danych testowych

Jak widzimy, model osiągnął MSE równe 29,49182, przy obliczeniach trwających 0,65 sekundy.

W ostatniej iteracji uczenia (48000) MSE dla danych treningowych wynosiło 19,43581.

4.3.2. Sieć neuronowa
W przypadku sieci neuronowej efekt działania na tych samych danych treningowych i testowych wygląda jak
poniżej:

59 / 96

Rysunek 4.4. Wynik działania modelu sieci neuronowej na danych testowych

60 / 96

Możemy odczytać następujące informacje:

MSE na danych testowych wyniósł 17,43655
MSE dla ostatniej iteracji na danych treningowych wyniósł 7,71858
czas obliczeń to 3,75 sekundy.

Oprócz tego mamy również wyświetlone wagi obliczone dla wartwy ukrytej (W1) i wyjściowej (W2) oraz biasy dla
obu warstw (B1 i b2).

Podsumowując, sieć neuronowa osiągnęła lepszą jakość predykcji (niższe MSE) na danych testowych w
porównaniu do modelu wielorakiej regresji liniowej. Jednakże czas obliczeń był dłuższy ze względu na bardziej
złożoną strukturę modelu i dodatkowe operacje związane z funkcją aktywacji i propagacją wsteczną (oraz
potwornie niezoptymalizowany kod 🤪).

Zauważmy też, że w obu modelach występuje spora różnica pomiędzy MSE obliczanym na danych treningowych
względem danych testowych.

4.4. Uproszczenie obliczeń
Na listingu 4.4 staraliśmy się przedstawić kod, który jest jak najbardziej zbliżony do wzorów matematycznych, na
których został oparty. Wiele obliczeń można jednak uprościć, otrzymując następujący fragment kodu:

z wyprowadzoną poza pętlę uczącą zmienną:

Listing 4.5. Uproszczony kod obliczania gradientów sieci neuronowej

Efekt działania powyższej procedury przedstawiono na poniższym rysunku.

// The second layer (output)
float[,] dLdP = errors.Multiply(twoOverN);
float dLdBias2 = dLdP.Sum();
float[,] dLdW2 = O1.Transpose().MultiplyDot(dLdP);

// The first layer (hidden)
float[,] dLdO1 = dLdP.MultiplyDot(W2.Transpose());
float[,] dLdN1 = dLdO1.MultiplyElementwise(N1.SigmoidDerivative());
float[] dLdBias1 = dLdN1.SumByColumn();
float[,] dLdW1 = XTrainT.MultiplyDot(dLdN1);

float twoOverN = 2.0f / nTrain;

61 / 96

Rysunek 4.5. Wynik działania uproszczonego modelu sieci neuronowej na danych testowych

Wszystkie wyliczone parametry pozostały bez zmian, natomiast czas obliczeń skrócił się z 3,75 do 2,8 sekundy.

62 / 96

4.5. Podsumowanie
W tym rozdziale utworzyliśmy prostą sieć neuronową z jedną warstwą ukrytą i porównaliśmy ją z modelem
wielorakiej regresji liniowej. Omówiliśmy sposób generowania predykcji przez oba modele oraz obliczania funkcji
straty MSE. Przeanalizowaliśmy również proces aktualizacji wag i biasów w obu modelach za pomocą metody
spadku gradientowego, wykorzystując regułę łańcuchową do obliczenia niezbędnych pochodnych w przypadku
sieci neuronowej. Na koniec porównaliśmy jakość predykcji obu modeli na danych testowych, zauważając, że sieć
neuronowa osiągnęła lepsze wyniki kosztem dłuższego czasu obliczeń. Przedstawiliśmy także uproszczony kod
obliczania gradientów dla sieci neuronowej, który poprawił wydajność bez zmiany wyników.

W następnym rozdziale spróbujemy opakować poznane elementy w bibliotekę C# NeuralNetworks i sprawdzić w
jaki sposób za jej pomocą można zbudować i wytrenować sieć w oparciu o dane Boston Housing.

Created: 2025-11-15

Last modified: 2025-12-22

Title: 4. Pierwsza sieć neuronowa

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze]

63 / 96

5. Biblioteka NeuralNetworks
Każdorazowe implementowanie sieci neuronowej od podstaw, tak jak to zostało przedstawione na
listingach 4.2 i 4.5 w poprzednim rozdziale, byłoby niepraktyczne. Dlatego też w kolejnych rozdziałach
będziemy posługiwać się specjalizowaną biblioteką (o nazwie NeuralNetworks), służącą do definiowania i
trenowania modeli sieci neuronowych oraz do przeprowadzania procesu wnioskowania (inferencji) z
użyciem tych modeli.

A pod koniec tego rozdziału ponownie spróbujemy rozwiązać problem przewidywania cen domów w
zbiorze Boston Housing, tym razem korzystając z omawianej biblioteki.

5.1. Struktura biblioteki
Biblioteka NeuralNetworks składa się z trzech części. Są to:

1. część ogólna, zawierająca elementy wspólne dla całej biblioteki (NeuralNetworks.Core),
2. część związana z definicją architektury modelu sieci neuronowej (NeuralNetworks.Models, Neural

Networks.Layers, NeuralNetworks.Operations, NeuralNetworks.Losses),
3. część związana z trenowaniem modelu (NeuralNetworks.Trainers, NeuralNetworks.Optimizers,

NeuralNetworks.DataSources, NeuralNetworks.LearningRates, NeuralNetworks.ParamInitializers).

Każdą z tych części omówimy w kolejnych podpunktach.

5.2. Część ogólna
5.2.1. ArrayExtensions
Jednym z podstawowych elementów biblioteki jest klasa statyczna ArrayExtensions, implementująca
przydatne - w kontekście naszej biblioteki - operacje na macierzach. Operacje te można podzielić na
następujące grupy:

1. tworzenie i inicjalizacja macierzy (np. AsZeros, AsZeroOnes, RandomInPlace),
2. operacje arytmetyczne na macierzach (np. Add, AddInPlace, Multiply, MultiplyDot, Multiply

Elementwise),
3. agregacje i statystyki (np. Sum, Mean, ArgMax, StdDev),

NOTE

Kod źródłowy omawianej biblioteki znajduje się na GitHub . Dostępna jest również jej
dokumentacja.

Ponadto, projekt NeuralNetworksExamples zawiera przykładowe procedury wykorzystujące tę
bibliotekę.



https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworks
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworks
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworks
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworksExamples
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworksExamples
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/src/NeuralNetworksExamples

64 / 96

4. selekcja danych i manipulacja macierzami (np. GetRow, SetRow, Transpose),
5. normalizacja danych (np. Standardize)
6. funkcje mogące pełnić role funkcji aktywacji (np. Sigmoid, Tanh, Softmax (nie jest to "typowa"

funkcja aktywacji, ponieważ działa na całym wektorze jednocześnie)),
7. permutacja i operacje pomocnicze (np. ClipInPlace, PermuteInPlace).

5.2.2. OperationBackend
OperationBackend jest to klasa statyczna, która pełni rolę rozdzielnika pomiędzy konkretnymi
implementacjami interfejsu IOperations. W ten sposób możemy wybierać konkretną implementację,
która będzie wykorzystywana przez bibliotekę NeuralNetworks do wykonywania operacji numerycznych
podczas trenowania lub uruchamiania danego modelu sieci neuronowej.

Interfejs IOperations definiuje zestaw operacji macierzowych niezbędnych do działania sieci, takich jak
mnożenie macierzy, dodawanie biasów, funkcje aktywacji, operacje konwolucyjne, itp. Różne
implementacje tego interfejsu mogą być zoptymalizowane pod kątem różnych scenariuszy użycia, takich
jak wydajność na CPU, wykorzystanie GPU, czy minimalizacja zużycia pamięci.

Obecnie zaimplentowane są (częściwo lub w całości) następujące zestawy operacji:

OperationsArray - podstawowa, "naiwna" implementacja, służąca do eksperymentów/debugowania,
oparta głównie o działania na tablicach float[], float[,] oraz float[,,,],
OperationsSpan - implementacja wykorzystująca struktury Span i ReadOnlySpan do
wykonywania operacji macierzowych, oferująca lepszą wydajność niż OperationsArray,
OperationsSpanParallel - implementacja oparta o Span<T> i ReadOnlySpan<T>, wykorzystująca
przetwarzanie równoległe (metoda Parallel.For) do dalszego przyspieszenia obliczeń,
OperationsGpu - implementacja wykorzystująca bibliotekę ILGPU (kod źródłowy) do
wykonywania operacji macierzowych na karcie graficznej (GPU).

Każda z powyższych klas dziedziczy po poprzedniej (z wyjątkiem OperationsArray), umożliwiając
wykonywanie operacji domyślnych w razie braku implementacji danej operacji w konkretnej klasie.

Z naszych eksperymentów wynika, że o ile klasa OperationsSpanParallel oferuje zazwyczaj całkiem
przyzwoitą wydajność w porównaniu z klasami "wolniejszymi", o tyle klasa OperationsGpu może
przyspieszyć, ale może też spowolnić obliczenia w stosunku do OperationsSpanParallel w zależności od
konkretnego scenariusza użycia i rozmiaru danych, niezaleznie od posiadanej karty graficznej. Dlatego
zalecamy przeprowadzanie własnych testów wydajnościowych w kontekście konkretnego zastosowania.

Ustawienie odpowiedniego typu backendu odbywa się poprzez wywołanie metody statycznej
Use(OperationBackendType), gdzie OperationBackendType to typ klasy implementującej interfejs
IOperations, np.:

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.for
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.for
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.for
https://ilgpu.net/
https://ilgpu.net/
https://ilgpu.net/
https://github.com/m4rs-mt/ILGPU/
https://github.com/m4rs-mt/ILGPU/
https://github.com/m4rs-mt/ILGPU/

65 / 96

5.3. Definicja architektury modelu sieci neuronowej
5.3.1. Klasy opisujące model
Podstawowym elementem biblioteki jest abstrakcyjna klasa Model<TInputData, TPrediction>, która
reprezentuje sieć neuronową. Klasa ta posiada metody służące do definiowania warstw i ustawiania
funkcji straty, do dokonywania predykcji oraz metody wywoływane przez trenera Trainer<TInputData,
TPrediction> w trakcie procesu uczenia.

OperationBackend.Use(OperationBackendType.CpuSpansParallel);

NOTE

W bibliotece NeuralNetworks zrezygnowaliśmy z wykorzystania zewnętrznych pakietów do obsługi
macierzy (jak np. Math.NET Numerics), ponieważ chcieliśmy zachować pełną kontrolę nad jej
implementacją oraz utrzymać wartość edukacyjną całego projektu. Nie znaczy to, że w przyszłości
nie zostaną dodane implementacje oparte na takich bibliotekach, np OperationsMathNet.



public abstract class Model<TInputData, TPrediction>
 where TInputData : notnull
 where TPrediction : notnull
{
 private LayerList<TInputData, TPrediction> _layers;
 private float _lastLoss;

 protected Model(LayerListBuilder<TInputData, TPrediction>? layerListBuilder,
Loss<TPrediction> lossFunction)
 {
 LossFunction = lossFunction;
 _layers = layerListBuilder.Build();
 }

 public IReadOnlyList<Layer> Layers => _layers;
 public Loss<TPrediction> LossFunction { get; }

 public TPrediction Forward(TInputData input, bool inference)
 => _layers.Forward(input, inference);

 public void Backward(TPrediction lossGrad)
 => _layers.Backward(lossGrad);

 public float TrainBatch(TInputData xBatch, TPrediction yBatch)

https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/

66 / 96

Listing 5.1. Szkic klasy Model<TInputData, TPrediction>

Klasami pochodnymi są BaseModel<TInputData, TPrediction>, przeznaczona do pokrycia przez
konkretną implementację, oraz klasa GenericModel<TInputData, TPrediction>, przeznaczona do
bezpośredniego użycia.

Klasy modelu umieszczone zostały w przestrzeni nazw NeuralNetworks.Models. Ich hierarchia została
przedstawiona na poniższym diagramie klas.

Rysunek 5.1. Diagram klas modelu sieci neuronowej

Przykład użycia tych klas przedstawiono w rozdziale 5.5.1.

 {
 TPrediction predictions = Forward(xBatch, false);
 _lastLoss = LossFunction.Forward(predictions, yBatch);
 Backward(LossFunction.Backward());
 return _lastLoss;
 }

 public void UpdateParams(Optimizer optimizer)
 => _layers.UpdateParams(optimizer);

 public int GetParamCount()
 => _layers.Sum(l => (int?)l.GetParamCount()) ?? 0;

}

67 / 96

5.3.2. Warstwy
Biblioteka zawiera szereg gotowych warstw sieci neuronowych, zdefiniowanych jako klasy dziedziczące
po abstrakcyjnej klasie Layer<TIn, TOut>.

public abstract class Layer<TIn, TOut> : Layer
 where TIn : notnull
 where TOut : notnull
{
 private TOut? _output;
 private TIn? _input;

 private OperationList<TIn, TOut>? _operations;

 protected TIn? Input => _input;

 public TOut Forward(TIn input, bool inference)
 {
 bool firstPass = _input is null;

 _input = input;
 if (firstPass)
 {
 // First pass, set up the layer.
 SetupLayer();
 }

 _output = _operations.Forward(input, inference);
 return _output;
 }

 public TIn Backward(TOut outputGradient)
 {
 TIn inputGradient = _operations.Backward(outputGradient);
 return inputGradient;
 }

 public override void UpdateParams(Optimizer optimizer)
 => _operations.UpdateParams(this, optimizer);

 protected virtual void SetupLayer()
 {
 // Build the operation list
 _operations = CreateOperationListBuilder().Build();
 }

68 / 96

Listing 5.2. Szkic abstrakcyjnej klasy Layer<TIn, TOut>

Klasy opisujące warstwy znajdują się w przestrzeni nazw NeuralNetworks.Layers i obejmują między
innymi:

warstwy gęste (ang. dense, fully connected) - DenseLayer,
warstwy konwolucyjne - Conv2DLayer,
warstwy spłaszczające - FlattenLayer.

Poniżej przedstawiono diagram klas związanych z definiowaniem warstw sieci neuronowej.

Rysunek 5.2. Diagram klas warstw

5.3.3. Operacje
Definicja każdej warstwy obejmuje listę operacji (w tym funkcję aktywacji oraz dropout). Klasy
implementujące operacje umieszczone są w przestrzeni nazw NeuralNetworks.Operations.

Warstwa stanowi logiczny etap przetwarzania danych, natomiast operacje są elementarnymi krokami
wykonywanymi wewnątrz warstwy.

Przykładowe operacje to:

 public override int GetParamCount()
 => _operations.GetParamCount();

}

69 / 96

zastosowanie wag i biasów - WeightMultiply, BiasAdd,
funkcje aktywacji - Sigmoid, ReLU2D,
dropout - Dropout2D,
konwolucja - Conv2D,
operacje spłaszczające - Flatten.

Poniżej przedstawiony jest diagram klas związanych z definiowaniem operacji.

Rysunek 5.3. Diagram klas operacji

70 / 96

Poniżej przedstawiono kod przykładowej operacji - WeightMultiply - w wersji poglądowej, bez użycia
backendu.

Listing 5.3a. Klasa WeightMultiply - wersja bez użycia backendu

Rzeczywista implementacja tej klasy jest mniej interesująca i wygląda następująco:

public class WeightMultiply(float[,] weights) : ParamOperation2D<float[,]>(weights)
{
 protected override float[,] CalcOutput(bool inference)
 => Input.MultiplyDot(Param);

 protected override float[,] CalcInputGradient(float[,] outputGradient)
 => outputGradient.MultiplyDot(Param.Transpose());

 protected override float[,] CalcParamGradient(float[,] outputGradient)
 => Input.Transpose().MultiplyDot(outputGradient);

 public override void UpdateParams(Layer? layer, Optimizer optimizer)
 => optimizer.Update(layer, Param, ParamGradient);

 public override int GetParamCount()
 => Param.Length;
}

using static NeuralNetworks.Core.Operations.OperationBackend;

public class WeightMultiply(float[,] weights) : ParamOperation2D<float[,]>(weights)
{
 protected override float[,] CalcOutput(bool inference)
 => WeightMultiplyOutput(Input, Param);

 protected override float[,] CalcInputGradient(float[,] outputGradient)
 => WeightMultiplyInputGradient(outputGradient, Param);

 protected override float[,] CalcParamGradient(float[,] outputGradient)
 => WeightMultiplyParamGradient(Input, outputGradient);

 public override void UpdateParams(Layer? layer, Optimizer optimizer)
 => optimizer.Update(layer, Param, ParamGradient);

 protected override void EnsureSameShapeForParam(float[,]? param, float[,] paramGradient)
 => EnsureSameShape(param, paramGradient);

 public override int GetParamCount()

71 / 96

Listing 5.3b. Klasa WeightMultiply - wersja z użyciem backendu

5.3.3.1. Funkcje aktywacji
Część z wyżej omówionych operacji to funkcje aktywacji. W bibliotece zdefiniowano m.in. następujące,
podstawowe funkcje aktywacji.

Poniżej przedstawiony został diagram klas związanych z definicjami funkcji aktywacji.

 => Param.Length;
}

72 / 96

73 / 96

Rysunek 5.4. Diagram klas funkcji aktywacji

5.3.3.1.1. ReLU
Definicja matematyczna w klasycznym wydaniu to:

albo inaczej:

My jednak zastosowaliśmy nieco zmodyfikowaną wersję, w której wynik jest skalowany przez
współczynnik beta:

Kod w C# w bibliotece NeuralNetworks:

Listing 5.4. Implementacja funkcji ReLU w bibliotece NeuralNetworks

5.3.3.1.2. Leaky ReLU

ś
ś

ś
ś

public static float[,] ReLU(this float[,] source, float beta = 1f)
{
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 float value = source[i, j];
 res[i, j] = value >= 0 ? value * beta : 0;
 }
 }
 return res;
}

74 / 96

Tu również nieco oddaliliśmy się od standardu. Definicja matematyczna naszej "autorskiej" wersji Leaky
ReLU to:

Umożliwi to nam szalone eksperymenty z różnymi skalami tej funkcji aktywacji.

Kod w C# w bibliotece NeuralNetworks:

Listing 5.5. Implementacja funkcji Leaky ReLU w bibliotece NeuralNetworks

5.3.3.1.3. Sigmoid
Definicja matematyczna:

Kod w C# w bibliotece NeuralNetworks:

ś
ś

public static float[,] LeakyReLU(this float[,] source, float alpha = 0.01f, float beta = 1f)
{
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 float value = source[i, j];
 res[i, j] = value >= 0 ? value * beta : value * alpha;
 }
 }
 return res;
}

public static float[,] Sigmoid(this float[,] source)
{
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)

75 / 96

Listing 5.6. Implementacja funkcji Sigmoid w bibliotece NeuralNetworks

5.3.3.1.4. Tanh
Definicja matematyczna:

Kod w C# w bibliotece NeuralNetworks:

Listing 5.7. Implementacja funkcji Tanh w bibliotece NeuralNetworks

5.3.3.1.5. Wykresy i diagram klas funkcji aktywacji
Przebiegi zaimplementowanych, typowych funkcji aktywacji przedstawiono na poniższym wykresie.

 {
 res[i, j] = 1 / (1 + MathF.Exp(-source[i, j]));
 }
 }

 return res;
}

public static float[,] Tanh(this float[,] source)
{
 int rows = source.GetLength(0);
 int columns = source.GetLength(1);
 float[,] res = new float[rows, columns];

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 res[i, j] = MathF.Tanh(source[i, j]);
 }
 }

 return res;
}

76 / 96

Rysunek 5.5. Wykresy funkcji aktywacji: ReLU, Leaky ReLU, Sigmoid, Tanh

5.3.4. Funkcje straty
Kompletna definicja modelu obejmuje również (oprócz listy warstw) podanie wykorzystywanej funkcji
straty (loss function). Klasy implementujące funkcje straty znajdują się w przestrzeni nazw Neural
Networks.Losses.

public abstract class Loss<TPrediction>
{
 private TPrediction? _prediction;
 private TPrediction? _target;

 public TPrediction Prediction => _prediction;
 protected internal TPrediction Target => _target;

 public float Forward(TPrediction prediction, TPrediction target)
 {
 _prediction = prediction;
 _target = target;
 return CalculateLoss();
 }

 public TPrediction Backward()

77 / 96

Listing 5.8. Szkic abstrakcyjnej klasy Loss<TPrediction>

Przykładowe funkcje straty zaimplementowane w naszej bibliotece i dziedziczące po Loss<TPrediction>
to:

błąd średniokwadratowy (Mean Squared Error) - MeanSquaredError,
entropia krzyżowa (Softmax Cross Entropy Loss) - SoftmaxCrossEntropyLoss,
entropia krzyżowa z "log-sum-exp trick" (Softmax Log-Sum-Exp Cross Entropy Loss) - SoftmaxLog
SumExpCrossEntropyLoss.

Rysunek 5.6. Diagram klas funkcji strat

Poniżej przedstawiono dwie popularne funkcje straty.

5.3.4.1. MSE (Mean Squared Error)
O tej funkcji wspominaliśmy już w poprzednich rozdziałach (wzory 1.8 i 4.2). Jest to jedna z najprostszych
i najczęściej stosowanych funkcji straty, zwłaszcza w regresji. Tytułem przypomnienia ponownie
przedstawiamy jej definicję.

 {
 TPrediction lossGradient = CalculateLossGradient();
 return lossGradient;
 }

 protected abstract float CalculateLoss();

 protected abstract TPrediction CalculateLossGradient();
}

78 / 96

Definicja matematyczna:

Kod w C# w bibliotece NeuralNetworks:

Listing 5.9. Implementacja funkcji MSE w bibliotece NeuralNetworks

Wartości zapisane w zmiennej _errors będą później wykorzystane do obliczenia gradientów w metodzie
CalculateLossGradient.

5.3.4.2. Softmax Cross-Entropy
Ta funkcja straty jest szczególnie odpowiednia dla zadań klasyfikacji wieloklasowej z pojedynczą etykietą.
Łączy w sobie funkcję softmax, która przekształca wyjścia sieci w prawdopodobieństwa klas, oraz
entropię krzyżową, która mierzy różnicę między przewidywanymi a rzeczywistymi etykietami klas.

Definicja matematyczna:

gdzie:

 to rzeczywiste etykiety klas (w formie one-hot, czyli same zera za wyjątkiem jednego elementu
równego 1 dla prawidłowej klasy),

 to wyjścia sieci przed zastosowaniem funkcji softmax (tzw. logits),
 to przewidywane prawdopodobieństwa klas po zastosowaniu funkcji softmax (zsumowane

wartości wynoszą 1 dla każdej próbki),
 to liczba próbek w batchu,
 to liczba klas (w przypadku MNIST jest to 10 - jedna klasa dla każdej cyfry),
 to indeks próbki w batchu (od 1 do),

protected override float CalculateLoss()
{
 int batchSize = Prediction.GetLength(0);
 _errors = Prediction.Subtract(Target);
 return _errors.Power(2).Sum() / batchSize;
}

79 / 96

 to indeks klasy (od 1 do).

W skrócie, podnosimy do potęgi predykcji sieci dla danej próbki i kategorii, następnie dzielimy przez
sumę tych wartości dla wszystkich kategorii, aby uzyskać prawdopodobieństwa. Następnie
logarytmujemy te prawdopodobieństwa i mnożymy przez rzeczywiste etykiety klas (wartości etykiet są
równe tylko 0 lub 1), uśredniając wyniki dla wszystkich próbek.

Odpowiedni kod w bibliotece NeuralNetworks wygląda następująco:

Listing 5.10. Implementacja funkcji Softmax Cross-Entropy w bibliotece NeuralNetworks

Dwie uwagi. Po pierwsze, w implementacji funkcji straty stosujemy klipowanie wartości softmax do
przedziału otwartego (0, 1), aby uniknąć problemów z logarytmem zera. Po drugie, zapisujemy wartości
softmax w polu _softmaxPrediction, ponieważ będą one potrzebne podczas obliczania gradientów w
metodzie CalculateLossGradient.

5.3.5. Inicjalizacja wag
Wagi i biasy w warstwach sieci neuronowej muszą być odpowiednio zainicjalizowane przed
rozpoczęciem procesu trenowania. W bibliotece NeuralNetworks dostępne są różne strategie inicjalizacji
parametrów, zaimplementowane jako klasy dziedziczące po abstrakcyjnej klasie ParamInitializer.

Przykładowy inicjalizator wag to GlorotInitializer o następującej implementacji:

protected override float CalculateLoss()
{
 _softmaxPrediction = Prediction.Softmax();
 float[,] clippedSoftmax = _softmaxPrediction.Clip(eps, 1 - eps);
 return -clippedSoftmax.Log().MultiplyElementwise(Target).Mean();
}

public class GlorotInitializer(SeededRandom? random = null) : RandomInitializer(random)
{
 internal override float[,] InitWeights(int inputColumns, int neurons)
 {
 float stdDev = MathF.Sqrt(2.0f / (inputColumns + neurons));
 return CreateRandomNormal(inputColumns, neurons, Random, 0, stdDev);
 }

 internal override float[] InitBiases(int neurons)
 => new float[neurons];
}

public static float[,] CreateRandomNormal(int rows, int columns, Random random, float mean =

80 / 96

Listing 5.11. Implementacja inicjalizatora Glorot w bibliotece NeuralNetworks

Matematycznie zapisalibyśmy to za pomocą następujących wzorów:

gdzie

 to waga łącząca neuron z warstwy poprzedniej z neuronem w bieżącej warstwie, to bias
neuronu , to liczba neuronów w warstwie poprzedniej, to liczba neuronów w bieżącej warstwie.
Symbol oznacza rozkład normalny o średniej 0 i wariancji (to odchylenie standardowe).

5.3.6. Dropout

0, float stdDev = 1)
{
 float[,] res = new float[rows, columns];
 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < columns; col++)
 {
 res[row, col] = BoxMuller() * stdDev + mean;
 }
 }
 return res;

 float BoxMuller()
 {
 // uniform(0,1] random doubles
 // NextDouble returns [0,1), so to convert to (0,1], we use 1 - NextDouble()
 // Zero must be excluded because log(0) is undefined.
 double u1 = 1 - random.NextDouble();
 double u2 = 1 - random.NextDouble();

 //random normal(0,1)
 float randStdNormal = Convert.ToSingle(Math.Sqrt(-2.0 * Math.Log(u1)) * Math.Sin(2.0
* Math.PI * u2));
 return randStdNormal;
 }
}

81 / 96

Dropout to technika stosowana w sieciach neuronowych w celu zapobiegania przeuczeniu (overfitting).
Polega ona na losowym "wyłączaniu" (ustawianiu na zero) pewnego odsetka neuronów podczas
treningu, co zmusza sieć do nauki bardziej ogólnych cech danych. W bibliotece NeuralNetworks dropout
został zaimplementowany jako operacja dziedzicząca Dropout2D.

Implementacja wygląda następująco:

Listing 5.12. Implementacja operacji Dropout2D w bibliotece NeuralNetworks

Zauważmy, że podczas inferencji (czyli predykcji) dropout nie jest stosowany - zamiast tego wyjścia są
skalowane przez prawdopodobieństwo zachowania neuronu (keepProb), aby uwzględnić fakt, że podczas
treningu część neuronów była wyłączana. Gdybyśmy nie skalowali wyjść podczas inferencji, wartości
wyjściowe byłyby zawyżone w porównaniu do tych uzyskiwanych podczas treningu.

5.4. Trenowanie modelu
5.4.1. Trener

public class Dropout2D(float keepProb = 0.8f, SeededRandom? random = null) :
Operation2D, IParameterCountProvider
{
 private float[,]? _mask;

 protected override float[,] CalcOutput(bool inference)
 {
 if (inference)
 {
 return Input.Multiply(keepProb);
 }
 else
 {
 _mask = Input.AsZeroOnes(keepProb, random ?? new());
 return Input.MultiplyElementwise(_mask);
 }
 }

 protected override float[,] CalcInputGradient(float[,] outputGradient)
 {
 return outputGradient.MultiplyElementwise(_mask);
 }

 public int GetParamCount()
 => _mask?.Length ?? 0;
}

82 / 96

Do trenowania modelu służy klasa Trainer<TInputData, TPrediction>. Klasa ta przyjmuje jako parametry
typ danych wejściowych i wyjściowych oraz posiada metody służące do trenowania modelu na podstawie
dostarczonych danych treningowych. Przykładowe użycie trenera zaprezentowano w rozdziale 5.5.3.

Podstawową metodą tej klasy jest metoda Fit, która realizuje proces trenowania modelu. Metoda ta
przyjmuje jako argumenty dostawcę danych treningowych i testowych, liczbę epok, rozmiar batcha oraz
optymalizator.

Poniżej przedstawiono zasadniczą część kodu trenera (metoda Fit):

Listing 5.13. Fragment kodu trenera

Implementacja metody TrainBatch, wywoływanej w powyższym kodzie została przedstawiona na listingu
5.1.

5.4.2. Dostarczanie danych treningowych i testowych
Do zaopatrywania trenera w dane treningowe i testowe służy klasa DataSource<TInputData,
TPrediction>. Dla danych Boston Housing wykorzystaliśmy klasę dziedziczącą po tej klasie.

Listing 5.9. Definicja dostawcy danych treningowych i testowych dla danych Boston Housing

Zmienna dataSource jest następnie przekazywana do metody Fit trenera, jak pokazano na listingu 5.13.

Pozostałe klasy dostawców danych znajdują się w przestrzeni nazw NeuralNetworks.DataSources.

(TInputData xTrain, TPrediction yTrain, TInputData? xTest, TPrediction? yTest)
= dataSource.GetData();

for (int epoch = 1; epoch <= epochs; epoch++)
{
 PermuteData(xTrain, yTrain, random);
 optimizer.UpdateLearningRate(epoch, epochs);

 foreach ((TInputData xBatch, TPrediction yBatch) in GenerateBatches(xTrain,
yTrain, batchSize))
 {
 trainLoss = model.TrainBatch(xBatch, yBatch);
 model.UpdateParams(optimizer);
 }
}

SimpleDataSource<float[,], float[,]> dataSource = new(XTrain, YTrain, XTest, YTest);

83 / 96

5.4.3. Optymalizatory i współczynniki uczenia
Do aktualizacji wag i biasów modelu podczas procesu trenowania służą optymalizatory (optimizers).
Klasy implementujące optymalizatory znajdują się w przestrzeni nazw NeuralNetworks.Optimizers.

Przykładowe optymalizatory to:

optymalizator spadku gradientowego (Stochastic Gradient Descent, SGD) - GradientDescent
Optimizer,
optymalizator spadku gradientowego z momentem - GradientDescentMomentumOptimizer,
optymalizator Adam - AdamOptimizer.

Optymalizatory korzystają ze współczynników uczenia (learning rates), które określają, jak duże kroki
mają być wykonywane podczas aktualizacji wag i biasów w kolejnych epokach. Klasy implementujące
współczynniki uczenia znajdują się w przestrzeni nazw NeuralNetworks.LearningRates.
Zaimplementowane zostały między innymi:

stały współczynnik uczenia - ConstantLearningRate,
wykładniczy spadek współczynnika uczenia - ExponentialDecayLearningRate,
liniowy spadek współczynnika uczenia - LinearDecayLearningRate.

Diagramy klas odpowiedzialnych za optymalizację przedstawiono poniżej.

NOTE

Optymalizatory SGD zawierają w nazwie słowo "Stochastic", ale w rzeczywistości ich implementacja
 nie wprowadza żadnego losowego, "stochastycznego" aspektu. W założeniach losowość ta
polegała na losowym wyborze próbki treningowej do obliczania gradientu w każdej iteracji. W
naszej implementacji gradient jest obliczany na podstawie całego batcha (lub nawet wszystkich)
próbek treningowych, co jest zgodne z podejściem zwanym mini-batch gradient descent. Nazwa ta
jednak jest powszechnie używana w literaturze i w implementacjach.



https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Optimizers/GradientDescentOptimizer.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Optimizers/GradientDescentOptimizer.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Optimizers/GradientDescentOptimizer.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworks/Optimizers/GradientDescentOptimizer.cs

84 / 96

Rysunek 5.7. Diagram klas optymalizatorów i współczynników uczenia

5.4.3.1. Spadek gradientowy z momentem
Optymalizator spadku gradientowego z momentem (SGD with Momentum) został zaimplementowany w
następujący sposób:

public class GradientDescentMomentumOptimizer(LearningRate learningRate, float momentum)
: Optimizer(learningRate)
{
 private readonly Dictionary<float[,], float[,]> _velocities2D = [];

 public override void Update(Layer? layer, float[,] param, float[,] paramGradient)
 {
 float learningRate = LearningRate.GetLearningRate();

 float[,] velocities = GetOrCreateVelocities(param);

 int dim1 = param.GetLength(0);
 int dim2 = param.GetLength(1);
 for (int i = 0; i < dim1; i++)
 {
 for (int j = 0; j < dim2; j++)
 {
 velocities[i, j] = velocities[i, j] * momentum + learningRate *
paramGradient[i, j];
 param[i, j] -= velocities[i, j];
 }
 }
 }

85 / 96

Listing 5.14. Implementacja optymalizatora spadku gradientowego z momentem w bibliotece
NeuralNetworks

Zasadę działania tego optymalizatora możemy przedstawić za pomocą poniższych wzorów:

gdzie

 to numer kroku (kolejnego batcha),
 to waga w kroku (przed i po aktualizacji),
 to gradient straty względem wagi w kroku (),
 to prędkość (moment) w kroku (początkowo jest inicjalizowane jako 0),
 to współczynnik momentu (zazwyczaj ustawiany na 0.9),
 to współczynnik uczenia dla danej epoki.

Jeżeli współczynnik momentu jest ustawiony na 0, optymalizator ten sprowadza się do klasycznego
spadku gradientowego.

5.4.3.2. Adam
Nieco bardziej złożony jest optymalizator Adam (Adaptive Moment Estimation). Jego implementacja w
C# w bibliotece NeuralNetworks wygląda następująco (pokazano jedynie wybrane metody dla tablic 2D):

 private float[,] GetOrCreateVelocities(float[,] param)
 {
 if (_velocities2D.TryGetValue(param, out float[,]? velocities))
 {
 return velocities;
 }
 else
 {
 velocities = new float[param.GetLength(0), param.GetLength(1)];
 _velocities2D.Add(param, velocities);
 return velocities;
 }
 }

}

public class AdamOptimizer : Optimizer
{
 private readonly float _beta1;

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam

86 / 96

 private readonly float _beta2;
 private readonly float _eps;

 private readonly Dictionary<float[,], State2D> _states2D = [];

 public AdamOptimizer(LearningRate learningRate, float beta1 = 0.9f, float beta2 =
0.999f, float eps = 1e-8f)
 : base(learningRate)
 {
 _beta1 = beta1;
 _beta2 = beta2;
 _eps = eps;
 }

 public override void Update(Layer? layer, float[,] param, float[,] paramGradient)
 {
 (int t, float[,] m, float[,] v) = GetOrCreateState(param);

 float beta1t = MathF.Pow(_beta1, t);
 float beta2t = MathF.Pow(_beta2, t);

 float lr = LearningRate.GetLearningRate();

 int dim1 = param.GetLength(0);
 int dim2 = param.GetLength(1);

 for (int i = 0; i < dim1; i++)
 {
 for (int j = 0; j < dim2; j++)
 {
 m[i, j] = _beta1 * m[i, j] + (1 - _beta1) * paramGradient[i, j];
 v[i, j] = _beta2 * v[i, j] + (1 - _beta2) * paramGradient[i, j] *
paramGradient[i, j];

 float mHat = m[i, j] / (1 - beta1t);
 float vHat = v[i, j] / (1 - beta2t);

 param[i, j] -= lr * mHat / (MathF.Sqrt(vHat) + _eps);
 }
 }
 }

 private State2D GetOrCreateState(float[,] param)
 {
 if (_states2D.TryGetValue(param, out State2D? state))
 {

87 / 96

Listing 5.15. Implementacja optymalizatora Adam w bibliotece NeuralNetworks

Zasadę działania optymalizatora Adam możemy przedstawić za pomocą poniższych wzorów:

 state.T++;
 return state;
 }
 var newState = new State2D(param);
 _states2D[param] = newState;
 return newState;
 }

 private sealed class State2D
 {
 public int T { get; set; } = 1;
 public float[,] M { get; }
 public float[,] V { get; }

 public State2D(float[,] param)
 {
 int rows = param.GetLength(0);
 int cols = param.GetLength(1);
 M = new float[rows, cols];
 V = new float[rows, cols];
 }

 public void Deconstruct(out int t, out float[,] m, out float[,] v)
 {
 t = T;
 m = M;
 v = V;
 }
 }
}

88 / 96

gdzie

 to numer kroku (kolejnego batcha) (początkowo),
 to waga w kroku (przed i po aktualizacji),
 to gradient straty względem wagi w kroku (),
 to pierwszy moment (średnia krocząca gradientów) w kroku (jest inicjalizowane jako 0),

 to drugi moment (średnia krocząca kwadratów gradientów) w kroku (jest inicjalizowane jako
0),

 to skorygowany pierwszy moment w kroku ,
 to skorygowany drugi moment w kroku ,
 i to współczynniki wygładzania (zazwyczaj ustawiane na 0.9 i 0.999),

 to współczynnik uczenia dla danej epoki,
 to mała stała dodawana do mianownika w celu uniknięcia dzielenia przez zero (zazwyczaj

ustawiana na 1e-8).

Częściowe objaśnienie zasady działania tego optymalizatora można znaleźć w na tej stronie .
Oryginalny artykuł znajduje się na ArXiv .

5.5. Zastosowanie biblioteki do analizy danych Boston
Housing
W poprzednim rozdziale utworzyliśmy prostą sieć neuronową przeznaczoną do przewidywania cen
domów na podstawie danych ze zbioru Boston Housing. Spróbujmy więc ponownie przeanalizować dane
z tego zbioru, tym razem korzystając z biblioteki NeuralNetworks.

5.5.1. Definicja modelu
Model sieci neuronowej możemy zdefiniować poprzez utworzenie klasy dziedziczącej po
BaseModel<TInputData, TPrediction> i nadpisanie metody CreateLayerListBuilder, w której określamy
strukturę sieci (liczbę warstw, liczbę neuronów w każdej warstwie oraz funkcje aktywacji). W naszym
przypadku model będzie miał jedną warstwę ukrytą z czterema neuronami i funkcją aktywacji tanh oraz
warstwę wyjściową z jednym neuronem i funkcją liniową. W naszej bibliotece nie musimy jawnie
deklarować warstwy wejściowej, ponieważ jest ona implikowana przez kształt danych wejściowych.

NOTE

Poniższy kod w pełnej wersji znajduje się na GitHub


class BostonHousingModel(SeededRandom? random)
 : BaseModel<float[,], float[,]>(new MeanSquaredError(), random)
{

https://www.geeksforgeeks.org/deep-learning/adam-optimizer/
https://www.geeksforgeeks.org/deep-learning/adam-optimizer/
https://www.geeksforgeeks.org/deep-learning/adam-optimizer/
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1412.6980
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworksExamples/BostonHousing.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworksExamples/BostonHousing.cs
https://github.com/kowaliszyn-pl/ml-csharp/blob/master/src/NeuralNetworksExamples/BostonHousing.cs

89 / 96

Listing 5.16. Definicja modelu sieci neuronowej do przewidywania cen w zbiorze Boston Housing

5.5.2. Dane źródłowe

Tablice XTrain, YTrain, XTest i YTest zostały przygotowane w sposób analogiczny do przedstawionego na
listingach 3.1 i 3.2. Między innymi zostały one poddane normalizacji za pomocą procedury Standardize.

5.5.3. Trenowanie modelu
Trenowanie modelu odbywa się poprzez utworzenie instancji klasy Trainer<TInputData, TPrediction>,
przekazanie do niej modelu i optymalizatora, a następnie wywołanie metody Fit wraz z dostawcą
danych i parametrami uczenia/logowania, jak pokazano poniżej.

 protected override LayerListBuilder<float[,], float[,]> CreateLayerListBuilder()
 {
 GlorotInitializer initializer = new(Random);

 return AddLayer(new DenseLayer(4, new Tanh2D(), initializer))
 .AddLayer(new DenseLayer(1, new Linear(), initializer));
 }
}

SimpleDataSource<float[,], float[,]> dataSource = new(XTrain, YTrain, XTest, YTest);

BostonHousingModel model = new(commonRandom);

ExponentialDecayLearningRate learningRate = new(
 initialLearningRate: 0.0009f,
 finalLearningRate: 0.0005f
);

Trainer2D trainer = new(
 model,
 new GradientDescentMomentumOptimizer(learningRate, 0.9f),
 random: commonRandom,
 logger: logger
);

trainer.Fit(
 dataSource,
 epochs: 48_000,
 evalEveryEpochs: 2_000,
 logEveryEpochs: 2_000,

90 / 96

Listing 5.17. Trenowanie modelu sieci neuronowej do przewidywania cen w zbiorze Boston Housing

5.5.4. Rezultat trenowania
Po zakończeniu trenowania modelu uzyskaliśmy wyniki przedstawione na poniższej ilustracji.

 batchSize: 400
);

91 / 96

92 / 96

Rysunek 5.8. Rezultat trenowania modelu sieci neuronowej do przewidywania cen w zbiorze Boston
Housing

Ponieważ jest to już nasze ostatnie spotkanie z danymi Boston Housing, pozwolimy sobie na krótkie
podsumowanie wyników.

Metoda
Funkcja
aktywacji Optymalizator

MSE na zbiorze
treningowym

MSE na
zbiorze

testowym

Czas
treningu

[s]

Regresja liniowa
(rozdział 3)

Linear SGD 19,44 29,49 0,87

Pierwsza sieć
neuronowa
(rozdział 4)

Sigmoid SGD 7,72 17,44 4,37

Biblioteka
NeuralNetworks
(rozdział 5)

Tanh SGD z
momentum

5,74 15,27 8,23

Tabela 5.1. Porównanie wyników różnych metod na danych Boston Housing (48 tys. epok)

5.6. Dodatek
Wybrane pojęcia związane z sieciami neuronowymi i uczeniem maszynowym, które pojawiły się w tym
rozdziale, zostały wyjaśnione poniżej.

5.6.1. Logits
Logits stanowią wyjście sieci przed aktywacją. Nie są prawdopodobieństwami (mogą być ujemne, nie
sumują się do 1). Są podstawą do obliczania strat i decyzji modelu. Softmax / sigmoid zamieniają logits
na prawdopodobieństwa.

5.6.2. Normalizacja danych
Normalizacja danych to proces skalowania cech wejściowych do określonego zakresu lub rozkładu.
Pomaga to w stabilizacji i przyspieszeniu procesu trenowania sieci neuronowej. Popularne metody
normalizacji to:

Min-Max Scaling: Skalowanie cech do zakresu [0, 1] lub [-1, 1].
Standaryzacja (Z-score Normalization): Przekształcanie cech do rozkładu o średniej 0 i odchyleniu
standardowym 1.

93 / 96

5.6.3. Epoka i krok
Epoka (epoch): Pełne przejście przez cały zbiór treningowy podczas trenowania modelu.
Krok (step): Pojedyncza aktualizacja wag modelu na podstawie jednej partii danych (batcha).

5.6.4. Batch i rozmiar batcha
Batch: Podzbiór danych treningowych używany do jednej aktualizacji wag modelu.
Rozmiar batcha (batch size): Liczba próbek w jednym batchu. Wpływa na stabilność i szybkość
trenowania.

5.6.5. Odchylenie standardowe i wariancja
Odchylenie standardowe (standard deviation): Miara rozproszenia danych wokół średniej. Oblicza się
je jako pierwiastek kwadratowy z wariancji.
Wariancja (variance): Średnia z kwadratów odchyleń poszczególnych wartości od średniej. Mierzy, jak
bardzo dane są rozproszone.

5.7. Podsumowanie
W tym rozdziale przedstawiliśmy bibliotekę NeuralNetworks, która umożliwia definiowanie, trenowanie i
wykorzystywanie modeli sieci neuronowych w języku C#. Omówiliśmy kluczowe komponenty biblioteki,
takie jak warstwy sieci, funkcje aktywacji, funkcje straty, inicjalizatory wag, optymalizatory oraz
mechanizmy dostarczania danych treningowych. Na zakończenie zastosowaliśmy bibliotekę do
rozwiązania problemu przewidywania cen domów na podstawie danych ze zbioru Boston Housing,
demonstrując jej praktyczne zastosowanie.

Created: 2025-12-03

Last modified: 2026-01-10

Title: 5. Biblioteka NeuralNetworks

Tags: [C#] [Sieci neuronowe] [Biblioteka] [NeuralNetworks]

94 / 96

6. Dane MNIST
W poprzednim rozdziale przedstawiona została biblioteka NeuralNetworks - jej struktura, kluczowe
komponenty oraz sposób definiowania, trenowania i wykorzystywania modeli sieci neuronowych.
Omówione zostały elementy niskopoziomowe, takie jak operacje macierzowe i funkcje straty, oraz
wyższego poziomu abstrakcje obejmujące modele, warstwy, operacje, optymalizatory oraz proces
trenowania. Celem tamtego rozdziału było przedstawienie względnie elastycznego, ogólnego narzędzia,
które ułatwi dalszą, praktyczną pracę z sieciami neuronowymi bez konieczności każdorazowego
implementowania ich od podstaw.

W niniejszym rozdziale przejdziemy od opisu biblioteki do jej praktycznego zastosowania. Jako przykład
wykorzystamy klasyczny zbiór danych MNIST , zawierający obrazy odręcznie pisanych cyfr, który
tradycyjnie stanowi punkt odniesienia w zadaniach klasyfikacji obrazów.

Analiza danych MNIST zostanie przeprowadzona z wykorzystaniem sieci opartych o warstwy gęste (ang.
dense layers, fully connected layers) oraz z wykorzystaniem sieci konwolucyjnych.

6.1. Zbiór danych MNIST
Podobnie jak zbiór Boston Housing, dane MNIST są powszechnie dostępne i stosowane w literaturze.
Zbiór ten zawiera 70 000 obrazów odręcznie pisanych cyfr (0-9), podzielonych na 60 000 obrazów
treningowych i 10 000 obrazów testowych. Każdy obraz ma rozmiar 28x28 pikseli i jest reprezentowany
jako macierz wartości szarości (od 0 do 255). Celem zadania jest sklasyfikowanie każdego obrazu do
jednej z dziesięciu klas odpowiadających cyfrom od 0 do 9 (problem klasyfikacji wieloklasowej z
pojedynczą etykietą, ang. multi-class, single-label classification problem).

W naszych eksperymentach będziemy pracować na znacznie mniejszym zbiorze uczącym, zawierającym
jedynie 20 000 obrazów (plus 10 000 obrazów testowych). Zbiór ten znajduje się na GitHub .

https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/data/MNIST
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/data/MNIST
https://github.com/kowaliszyn-pl/ml-csharp/tree/master/data/MNIST

95 / 96

Rysunek 6.1. Przykładowe obrazy z zestawu danych MNIST (źródło: Wikipedia)

6.2. Warstwy gęste
6.2.1. Architektura modelu
W naszych eksperymentach wykorzystamy prostą sieć neuronową zbudowaną z warstw gęstych.
Architektura modelu będzie następująca:

Listing 6.1. Definicja modelu MNIST z warstwami gęstymi

Model składa się z trzech warstw gęstych. Pierwsza warstwa zawiera 178 neuronów z funkcją aktywacji
ReLU, druga warstwa ma 46 neuronów z funkcją aktywacji Leaky ReLU, a trzecia warstwa wyjściowa
składa się z 10 neuronów (po jednym na każdą klasę cyfr) z liniową funkcją aktywacji. Dla pierwszych
dwóch warstw zastosowano mechanizm dropout z prawdopodobieństwem zachowania neuronu równym
0.85, co pomaga w redukcji przeuczenia modelu. Funkcja straty użyta w modelu to Softmax Cross-
Entropy, odpowiednia dla zadań klasyfikacji wieloklasowej.

W modelu zastosowano dwie różne funkcje aktywacji: ReLU (Rectified Linear Unit) oraz Leaky ReLU,
jednak można eksperymentować z innymi funkcjami, takimi jak Sigmoid czy Tanh, aby ocenić ich wpływ
na wyniki modelu.

Inicjalizacja wag

class MnistModel(SeededRandom? random)
 : BaseModel<float[,], float[,]>(new SoftmaxCrossEntropyLoss(), random)
{
 private const float Dropout1KeepProb = 0.85f;
 private const float Dropout2KeepProb = 0.85f;

 private readonly Operation2D activationFunction1 = new ReLU();
 private readonly Operation2D activationFunction2 = new LeakyReLU();

 protected override LayerListBuilder<float[,], float[,]> CreateLayerListBuilder()
 {
 GlorotInitializer initializer = new(Random);
 Dropout2D? dropout1 = new(Dropout1KeepProb, Random);
 Dropout2D? dropout2 = new(Dropout2KeepProb, Random);

 return AddLayer(new DenseLayer(178, activationFunction1, initializer, dropout1))
 .AddLayer(new DenseLayer(46, activationFunction2, initializer, dropout2))
 .AddLayer(new DenseLayer(10, new Linear(), initializer));
 }
}

96 / 96

Dropout

Funkcje straty

Użytą w naszym modelu funkcją straty jest Softmax Cross-Entropy, która jest powszechnie stosowana w
zadaniach klasyfikacji wieloklasowej.

6.2.2. Proces trenowania
6.2.2.1. Przygotowanie danych
6.2.2.2. Wyniki trenowania

6.3. Sieć konwolucyjna
Sieć konwolucyjna jest specjalnym rodzajem sieci neuronowej, która jest szczególnie skuteczna w analizie
danych o strukturze przestrzennej, takich jak obrazy. W przeciwieństwie do warstw gęstych, które łączą
każdy neuron z każdym innym neuronem w poprzedniej warstwie, warstwy konwolucyjne wykorzystują
operacje konwolucji, które pozwalają na wykrywanie lokalnych wzorców w danych wejściowych.

Operacja konwolucji przebiega następująco:

1. Na wejściu mamy obraz reprezentowany jako macierz pikseli (np. 28x28 dla obrazów MNIST).
2. Nakładamy na obraz mały filtr (jądro konwolucyjne), który przesuwamy po obrazie, np. piksel po

pikselu, wykonując operację iloczynu skalarnego między wartościami filtra a odpowiadającymi im
wartościami pikseli w obrazie.

3. Wynikiem tej operacji jest nowa macierz (mapa cech), która reprezentuje wykryte wzorce w obrazie.
Pojedynczą mapę cech nazywamy kanałem. W praktyce stosuje się wiele filtrów, co prowadzi do
powstania wielu kanałów.

6.3.1. Architektura modelu
6.3.2. Proces i wyniki trenowania

Created: 2025-12-19

Last modified: 2026-01-10

Title: 6. Dane MNIST i warstwy gęste

Tags: [C#] [Sieci neuronowe] [Biblioteka] [NeuralNetworks] [MNIST] [Warstwy gęste] [Dense Layers] [Fully
Connected Layers]

	0. Wstęp
	1. Prosta regresja liniowa
	2. Po co nam macierze?
	3. Dane Boston Housing
	4. Pierwsza sieć neuronowa
	5. Biblioteka NeuralNetworks
	6. Dane MNIST

