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0. Wstep

Niniejszy artykut - Sieci neuronowe (C#) - ma na celu zilustrowanie podstawowych pojec z zakresu sieci
neuronowych za pomoca przyktadéw napisanych w C#. Réwnolegle, czes¢ z tu zaprezentowanych

programéw ma swoje odpowiedniki przeniesione do Delphi Object Pascala.

Dla kogo jest ten artykut? Przede wszystkim dla programistow C#, ktérzy chca zrozumie, jak dziataja
sieci neuronowe "od srodka", bez korzystania z gotowych bibliotek i frameworkéw. Artykut zaktada
podstawowa znajomos¢ programowania w C# oraz podstaw matematyki (algebra liniowa, rachunek
rozniczkowy). | to w zasadzie tyle - reszta wiedzy jest przekazywana w trakcie lektury.

Petne kody zroédtowe dostepne sg w repozytorium na GitHub.

Dostepna jest rowniez wersja w formacie PDF.

Spis tresci
Artykut zostat podzielony na nastepujace rozdziaty:

e 1. Prosta regresja liniowa

W rozdziale tym opisano regresje liniowa (jako szczegdlny przypadek sieci neuronowej), metode
najmniejszych kwadratow, metode spadku gradientowego do uczenia modelu, funkcje straty MSE oraz
jej pochodne (wzgledem wspodtczynnika kierunkowego i wyrazu wolnego).

e 2. Po co nam macierze?

W rozdziale tym opisana zostata regresja wieloraka, macierze i implementacja podstawowych operadji
macierzowych, ktére postuzg w dalszej czesci artykutu do konstrukgji sieci neuronowych.

e 3. Dane Boston Housing

Przedstawiono proces uczenia modelu regresji wielorakiej na rzeczywistych danych z zestawu Boston
Housing z uzyciem metod omdéwionych w rozdziale 2. Przedstawiono réwniez sposéb przygotowania
danych do uczenia modelu (podziat na zbior uczacy i testowy, standaryzacja).

e 4. Pierwsza sie¢ neuronowa

Przedstawiono budowe i dziatanie prostej sieci neuronowej z jedng warstwa ukrytg, poréwnujac ja z
modelem regresji wielorakiej. Omowiono proces uczenia sieci za pomocg metody spadku gradientowego
i reguty fancuchowej. Przedstawiono podstawowe wzory na pochodne funkgji straty wzgledem wag i
biaséw poszczegolnych warstw sieci.

e 5. Biblioteka NeuralNetworks
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Przedstawiono strukture i funkcjonalnos¢ biblioteki NeuralNetworks (C#), stuzacej do definiowania i
trenowania modeli sieci neuronowych oraz do przeprowadzania procesu wnioskowania (inferencji) z
uzyciem tych modeli. Omowiono sposdb definiowania architektury sieci, funkcji aktywacji, funkgji straty
oraz metod optymalizacji dostepnych w bibliotece. Przedstawiono wzory matematyczne i implementacje
podstawowych elementdw, takich jak funkcje aktywacji, funkcje straty oraz algorytmy optymalizacji.
Zaprezentowano réwniez przyktad uzycia tej biblioteki do utworzenia modelu trenowanego na danych
Boston Housing.

e 6. Dane MNIST

Zaprezentowano dwie sieci neuronowe (sie¢ z warstwami gestymi oraz sie¢ konwolucyjng) trenowane na
zbiorze danych MNIST do rozpoznawania recznie pisanych cyfr.

Reszta in progress...

Created: 2025-11-10
Last modified: 2025-12-19
Title: 0. Wstep

Tags: [C#] [Object Pascal] [Delphi] [Sieci neuronowe] [Regresja liniowa]
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1. Prosta regresja liniowa

Omawianie sieci neuronowych w kontekscie jezyka C# rozpoczniemy od funkgji liniowej i regresji liniowey.

(0 NOTE

Dlaczego zaczynamy od regresji liniowej? Dlatego, ze regresja liniowa moze by¢ traktowana jak sie¢
neuronowa o jednej warstwie z jednym neuronem o liniowej funkcji aktywacji.

1.1. Co to takiego?

Funkcja liniowa opisuje zalezno$¢ miedzy zmiennymi za pomoca wyrazenia liniowego
Y =a1x1 + ax2 + -+ + apx, + b, a regresja liniowa wykorzystuje te zaleznos¢ do modelowania i
przewidywania wartosci jednej zmiennej na podstawie innej lub wielu innych zmiennych.

e 7Zmienne £1,Z2,...,Ly Nazywane sg zmiennymi niezaleznymi, a zmienna y - zmienng zalezna.

e Wspdtczynniki (albo wspoétczynniki kierunkowe) ay, as, ..., a, okreslajg stopien wptywu
poszczegolnych zmiennych niezaleznych na zmienna zalezna y (im wieksza jest bezwzgledna wartos¢
wspotczynnika kierunkowego, tym wiekszy wptyw; wspotczynnik rowny zeru oznacza brak wptywu).

e Parametr b jest nazywany wyrazem wolnym.

Przyjmuje sie, ze prosta regresja liniowa (ang. simple linear regression) to model regresji liniowej z jedng
zmienna niezalezna (czyli z jednym wspodtczynnikiem kierunkowym a i wyrazem wolnym b), a wieloraka
regresja liniowa (lub wielokrotna regresja liniowa, ang. multiple linear regression) to model regresji liniowej z
wieloma zmiennymi niezaleznymi (czyli z wieloma wspotczynnikami kierunkowymi ay, ag, . . .,a, i wyrazem
wolnym b).

Wiecej na ten temat mozna przeczyta¢ w Wikipedii: Regresja liniowa i Funkcja liniowars.

1.2. Metoda najmniejszych kwadratow

Istnieje wiele metod stuzacych do budowania modelu regres;ji liniowej. Najprostsza z nich jest metoda
najmniejszych kwadratow, ktéra ma zamkniete rozwigzanie analityczne.

Dla funkgji z jedng zmienna niezalezng w postaci y = ax + b mozemy obliczy¢ wspotczynnik kierunkowy:

2( —5)(%i — 9)

a= — (1.1)
> (z; — z)?
i=1
oraz wyraz wolny:
=y —aZ (1.2)

gdzie
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e (z;,y;) - kolejne punkty danych (obserwacje),
o« T = % Yk ®;—sredniazz,

e g=137 yi-dredniazy,

e 7 - liczba obserwacji.

1.2.1. Przyktad liczbowy

Przyktadowe dane dotyczace sprzedazy jakiegos produktu w zaleznosci od jego ceny (dane treningowe)
przedstawia ponizsza tabela.

Obserwacja (i) Cena [zH] (x) Sprzedaz [szt] (y)
1 10 100
2 20 80
3 30 60
4 40 40
5 50 20

Tabela 1.1. Dane treningowe: cena/sprzedaz

Najpierw obliczamy wartosci srednie:

10+ 20 + 30 + 40 + 50
g— 20N THTD _ g (1.3)
5
100 + 80 + 60 + 40 + 20
g— 0+ : T 6o (L4)

Nastepnie obliczamy wspodtczynnik kierunkowy a. Zgodnie na wzorem (1.1) jego licznik wynosi:

(10 — 30)(100 — 60) + (20 — 30)(80 — 60) + (30 — 30)(60 — 60)
+ (40 — 30)(40 — 60) + (50 — 30)(20 — 60) = —2000

a mianownik:

(10 — 30)2 4 (20 — 30)% + (30 — 30)2
+ (40 — 30)% + (50 — 30) = 1000

Wspodtczynnik a przyjmuje wiec wartosé:

—2000
= = -2 1.
1000 (15)
Na koniec obliczamy wyraz wolny b:
b=7—aZ =60—(—2)-30=60+60=120 (1.6)
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W ten sposob otrzymujemy nastepujacy wzér na poszukiwang funkcje:
y= —2z+ 120 (1.7)

Proste, prawda? %%

1.3. Metoda spadku gradientowego

W kontekscie uczenia maszynowego bardziej interesujgcym algorytmem jest metoda spadku gradientowego
(zwana réwniez metoda spadku gradientu, ang. gradient descent, GD), ktora polega na iteracyjnej aktualizacji
parametrow szukanej funkcji (modelu regresji).

(0 NOTE

Angielski termin gradient descent jest czesto ttumaczony jako spadek gradientu, co wydaje sie by¢ mylace.
W metodzie tej nie chodzi bowiem o to, ze sam gradient "spada" - jego warto$¢, w zaleznosci od
geometrycznego ksztattu funkgji straty, moze nawet w kolejnych iteracjach rosnac¢ - ale mimo to taka
nazwa ogolnie sie przyjeta. Wg mnie lepszym terminem jest wtasnie spadek gradientowy (a nawet
schodzenie gradientowe).

Zaczynamy od wyboru wartosci losowych dla a1, as,...,a, i b (cho¢ mozemy po prostu wstepnie ustawic je
na 0), a nastepnie iteracyjnie zwiekszamy lub zmniejszamy te wartosci, tak aby zminimalizowa¢ tzw. funkcje
straty.

Funkcja straty e (ang. loss function, zwana réwniez funkcjg kosztu) mierzy to, jak dobrze model dopasowuje sie
do danych treningowych. Im mniejsza wartos¢ tej funkgji, tym lepsze dopasowanie (ale bez przesady - zbyt
dobre dopasowanie, czyli tzw. overfitting, tez jest niepozadane). W przypadku regres;ji liniowej funkgcja straty
jest zazwyczaj MSE (czyli btqd sredniokwadratowy @, ang. Mean Square Error). Inne stosowane funkcje straty to
SSE (Sum of Squared Errors) i RMSE (Root Mean Square Error).

Btad sredniokwadratowy jest zdefiniowany jako:
1 O,
MSE = — 3 (5 — 4:)? (18)
i=1

gdzie:

e 7 —liczba obserwacji,

* Ui =a1x; + asxijy + -+ + @iy + b — przewidywana wartos$¢ zmiennej zaleznej dla obserwacji
(parametry a1, @2, - - - , Gn, b nie zalezg od indeksu %),

e y; — rzeczywista wartos¢ zmiennej zaleznej.
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(0 NOTE

Nie nalezy myli¢ g z §. To pierwsze to warto$¢ przewidywana, to drugie to wartos¢ srednia.

Aby znalez¢ optymalne wartosci parametrow modelu, wspétczynniki ay, az,

iteracyjnie aktualizowane w nastepujacy sposob:

aj:=aj;—lr- iM,S’E

Baj
gdzie:

® aj — wspotczynniki funkgji liniowej (dla 7 =1, 2, .. ),
e [r - wspdtczynnik uczenia (o nim ponizej),

. %MSE - pochodna funkgji straty wzgledem wspotczynnika a;.

(O NOTE

... ,0y (Oraz wyraz wolny b) sa

(1.9)

Symbol := to operator przypisania (czyli "przypisz wartos¢ z prawej strony do zmiennej po lewej stronie").
Bedziemy go stosowac dla odrdznienia od znaku réwnosci = uzywanego we wzorach matematycznych.

Wz6r na pochodna %MS’E wzgledem a; to:
J

0 2 &

i=1

a wiec ostatecznie aktualizacja wspotczynnika a; wyglada tak:

2 &,
aj::aj—lr-;Z(yi—yi

i=1
Wyraz wolny b aktualizowany jest w podobny sposdb:

0

b:=b—1Ir- —-MSE

ob

gdzie pochodna %MSE wzgledem b jest rowna:

0

)Zij

2 n
- MSE = — Ji — Yi
a5 M5 n;(y Yi)

(1.10)

(1.11)

(1.12)

(1.13)

Jak wida¢, wzory na powyzsze pochodne sg podobne do siebie, z tym ze w przypadku a; uwzgledniaja

dodatkowo zmienng niezalezng z;5 a w przypadku b - nie.
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1.3.1. Po co w ogole jest nam potrzebna pochodna?

Dlaczego zmiany parametréw regresji w kolejnych iteracjach sg proporcjonalne (wspdtczynnikiem
proporcjonalnosci jest tu wspdtczynnik uczenia Ir) do pochodnej funkgji straty wzgledem tych parametréw?
Dlatego, ze pochodna méwi nam o tym, w ktérag strone mamy zmierzac ze zmianami parametréw a i b, tak aby
funkcja straty malata.

Albo inaczej: gradient (czyli wektor pochodnych czastkowych) wskazuje nam kierunek najszybszego wzrostu
funkgji straty. A poniewaz szukamy drogi, ktéra poprowadzi nas do spadku tej funkcji, wiec poruszamy sie w
kierunku przeciwnym (stad minus we wzorze a; := a; — Ir - pochodna).

Dla danych z tabeli 1.1 wykres funkgji straty, po ktérej sie poruszamy wyglada tak:

Wykres 1.1. Funkcja straty MSE w zaleznosci od wspétczynnikow regresji liniowej a i b

Jej minimum przypada na punkt (a = —2,b = 120). Wspébtczynniki te odpowiadaja funkcji regresji liniowej
y= —2x+ 120 zréwnania (1.7).

A wiec: zaczynamy nasza zgadywanke na przyktad od punktu (a = 0,b = 0) (punkt startowy dobry jak kazdy
inny). Otrzymujemy dla niego jakas$ - wieksza od zera - wartos¢ MSE. Poniewaz interesuje nas najmniejsze
mozliwe do osiggniecia MSE (najlepiej rowne 0), to obliczamy pochodng (gradient) w tym wiasnie punkcie

(a = 0,b = 0), ktéra to pochodna wskazuje nam kierunek, w ktérym rosnie MSE. Gdy zmienimy znak wartosci
tej pochodnej (minus na poczatku wzoru: —Ir - %MSE), bedzie ona wskazywac kierunek, w ktorym MSE

maleje.
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W ten sposdb mozemy zaktualizowac wspotczynniki regresji, aby zblizy¢ sie do minimum funkgji straty. Super
E.

1.3.2. Wspotczynnik uczenia

Wspétczynnik uczenia (Ir, ang. learning rate) to hiperparametr, ktéry kontroluje wielko$¢ kroku, jaki
wykonujemy w kierunku minimum MSE w kazdej iteracji. Jest wspdlny dla wszystkich parametrow modelu i
zawsze wiekszy od 0. Zbyt duza warto$¢ Ir moze prowadzi¢ do niestabilnosci i oscylowania wokdét minimum
funkgji straty (model uczy sie gorzej), podczas gdy zbyt mata wartos¢ moze spowodowac zbyt wolne zbieganie
do minimum (model uczy sie wolnigj).

Ponizej przedstawiono animacje ilustrujagca wptyw réznych wartosci wspotczynnika uczenia (Ir = 0,01; 0,044;
0,21; 0,25; 0,256) na tempo spadku wartosci funkgji straty w trakcie uczenia modelu regres;ji liniowej metoda
spadku gradientowego.

Poréwnanie tempa spadku gradientowego dla roznych wspétczynnikéw uczenia

— MSE(E)
. Ir = 0.01 (zbyt powolna zbieznosc)
@ Ir = 0.044 (zbhieznosc)
25+ Ir = 0.21 {oscylacje, ale zbieznose)
. Ir = 0.25 {oscylacje, brak uczenia)
@ Ir= 0256 {rozbieznosc)
20
w 15 1
un
=
10 4
5 -
0
-1 o]

Wykres 1.2. Poréwnanie tempa spadku gradientowego dla roznych wspotczynnikéw uczenia. Mamy tutaj dang
(z =2,y =4) oraz funkcje y = a - ¢ + 0, a wiec szukanym parametrem jest w tym przypadku a = 2. Wartos¢
poczgtkowa, od ktérej rozpoczynamy poszukiwanie, wynosi tu a = —0.5
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1.3.3. Przyktad liczbowy

Zastosujemy teraz metode spadku gradientowego dla danych z poprzedniego przyktadu (cena/sprzedaz), aby
znalez¢ wspotczynniki regresji liniowej. Zaczniemy od wartosci poczatkowych a = 0 i b = 0, a wspotczynnik
uczenia ustawimy na lr = 0.0005.

Przeprowadzmy obliczenia dla pierwszych dwoch iteracji.

W kazdej iteracji obliczamy:

przewidywane wartosci 9;,

wartosci btedu (¥; — y;),
pochodna wzgledem wspétczynnika a, tj. %MSE = % Yo 1 (9: — yi)z; oraz
pochodng wzgledem wspétczynnika b, tj. %MSE = % Yo (G — yi)-

1.3.3.1. Pierwsza iteracja

W ponizszej tabeli umieszczono wyniki obliczen dla pierwszej iteracji. Przewidywane wartosci 4; sg rowne zeru,
poniewaz zaczynamy od wartosci poczatkowycha =0 ib = 0.

Cena [z} (x) Sprzedaz [szt] (y) Przewidywana sprzedaz (§ = ax + b) Btad (¥ — v)
10 100 0*10+0=0 0-100=-100
20 80 0*20+0=0 0-80=-80
30 60 0*30+0=0 0-60=-60
40 40 0*40+0=0 0-40=-40
50 20 0*50+0=0 0-20=-20

Tabela 1.2. Obliczenia dla pierwszej iteracji
Dla pierwszej iteracji:

e MSE (funkgja straty) wynosi:

1 <.
MSE = — > (i — wi)?
i1

_ %((—100)2 + (—80)2 + (—60)? + (—40)? + (—20)?) (1.14)
— @ — 4400

e Pochodna wzgledem a wynosi:
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0 2 <, .
e MSE = — ;(yi — Yi) T

- %((—100) .10 + (~80) - 20 + (—60) - 30 + (—40) - 40 + (—20) -50)  (1-15)
— %(—7000) — 2800

e Pochodna wzgledem b wynosi:

S MSE =2 i~
_ %((—100) + (=80) + (—60) + (—40) + (—20)) (1.16)
_ %(—300) — _120

e Parametry modelu po aktualizacji przyjmuja wartosci:

a:=a—Ir- %MSE = 0 — 0.0005 - (—2800) = 1.4 (1.17)
bi=b—Ir- %MSE = 0 — 0.0005 - (—120) = 0.06 (1.18)

Ptaszczyzna ilustrujgca pochodng MSE w punkcie (@ = 0,b = 0) ma wzér z = —2800a — 1205 + 4400.
Poszczegolne jej parametry wynikajg z réwnan (1.14), (1.15) i (1.16).

Na ponizszych wykresach (oba przedstawiajg to samo, tylko z nieco innej perspektywy) oznaczono:

e punktem czerwonym - punkt stycznosci "ptaszczyzny pochodnej" (kolor cyjanowy) z wykresem MSE (kolor
brazowy),

e punktem zielonym - wspétrzedne (@ = 1.4,b = 0.06), ktére otrzymalismy po pierwszej iteracji (wzory
(1.17) i (1.18)), poruszajac sie wzdtuz kierunku spadku wartosci MSE, czyli jakby toczac sie w dét po
"cyjanowej ptaszczyznie".
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Wykres 1.3. Funkgja straty i ptaszczyzna pochodnej w punkcie (a=0, b=0)
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Wykres 1.4. Funkcja straty i ptaszczyzna pochodnej w punkcie (a=0, b=0) - inna perspektywa

Na marginesie, zauwazmy, ze wykresy 1.1 1.2 (i oczywiscie 1.3) przedstawiajg te sama funkcje straty MSE.
Roznica w ksztatcie wynika z innych zakreséw wartosci wspétczynnikdéw a i b na osiach poziomych. Wykres 1.1
pokazuje funkcje straty w zakresie a € [—5, 1] i b € [100, 140] (tam znajduje sie jej minimum), a wykresy 1.2 i
1.3 - w zakresie a € [—2,2] i b € [—30, 30] (tam znajduje sie startowy punkt iteracji (@ = 0,b = 0)).

1.3.3.2. Druga iteracja

W drugiej iteracji powtarzamy powyzsze kroki, przy czym teraz uzywamy juz nowych wartosci wspotczynnikdéw
a=14ib=0.06.

Tabela z obliczonymi btedami wyglada nastepujaco:

Cena [z1] (%) Sprzedaz [szt] (y) Przewidywana sprzedaz (3§ = ax + b) Btad (3§ — v)
10 100 1.4 *10 + 0.06 = 14.06 14.06 - 100 = -85.94
20 80 1.4 *20 + 0.06 = 28.06 28.06 - 80 = -51.94
30 60 1.4 *30 + 0.06 = 42.06 42.06 - 60 = -17.94
40 40 1.4 *40 + 0.06 = 56.06 56.06 - 40 = 16.06
50 20 1.4 * 50 + 0.06 = 70.06 70.06 - 20 = 50.06

Tabela 1.3. Obliczenia dla drugiej iteracji
| podobnie jak wyzej, dla drugiej iteracji:
e MSE wynosi:

1
MSE = ¢ ((—85.94)% + (—51.94)% + (—17.94)* + 16.06% + 50.06%)
= 2633.84375

(1.19)

e Pochodna wzgledem a wynosi:

) 2
5o MSE = £ ((—85.94) - 10 + (~51.94) - 20 + (~17.94) - 30 + 16.06 - 40 + 50.06 - 50) ; »)

da
= 283.6002

e Pochodna wzgledem b wynosi:

2
2MSE = g(—85.94 — 51.94 — 17.94 + 16.06 + 50.06)

b (1.21)
= —35.8800

e Parametry modelu po aktualizacji przyjmuja wartosci:

13/96



a:=a—Ir- a%MSE — 1.4 — 0.0005 - 283.6002 = 1.2582 (1.22)

bi=b—Ir- %MSE = 0.06 — 0.0005 - (—35.88) = 0.0779 (1.23)

1.3.3.3. Kolejne iteracje

Iteracje powtarzamy do momentu, az wartosci funkcji straty przestang sie znaczaco zmieniac lub osiggniemy
zatozone maksimum liczby iteracji.

Przyktadowe wartosci dla 4 pierwszych iteracji pokazane sg na ponizszym rysunku:

Iteration: : Uupe, 66000 OMSE/da: -2800,0000 9MSE/db: -120,0000
Iteration: : 2614 ,95093

Iteration: : 2613,81860

OMSE/da:  -27,2836
AMSE/da: 4,0589

AMSE/db:  -ud4,3521
OMSE/db:  -u3,u893

I I

Iteration: : 2633,8U375 | 3MSE/da:  283,6002 | dMSE/db:  -35,8800
I I
I I

Learned parameters: a 1,2698 | b 90,1219
Expected parameters: a -2,0000 | b 120,0000

Rysunek 1.1. Wartosci parametrow regresji liniowej i MSE w kolejnych iteracjach

1.3.4. Przyktad implementacji

Ponizej znajduje sie przyktad implementacji w C# regres;ji liniowej przy uzyciu metody spadku gradientowego.
Kod zrodtowy znajduje na GitHub .

State LearningRate, Iterations i PrintEvery odpowiadajg kolejno za wspotczynnik uczenia (5e-4), liczbe iteragji
(35 tysiecy) oraz czestotliwos¢ wypisywania informacji o postepach na konsole (co 1 tysiac). Liczbe iteracji
mozna ustawi¢ na 4 a PrintEvery na 1, aby wyswietli¢ dane takie jak na rysunku 1.1.

Console.OutputEncoding = System.Text.Encoding.UTF8;
// 1. Set the parameters for the model
const float LearningRate = ©0.0005f;

const int Iterations = 35 000; // 4
const int PrintEvery = 1_000; // 1

// 2. Prepare training data

float[,] data = {
{ 10, 100 },
{ 20, 80 },
{ 30, 60 },
{ 40, 40 },
{ 50, 20 },
}s

// 3. Initialize model
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float a =9, b = 9;

// Number of samples
int n = data.GetLength(9);

// 4. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)

{

// Initialize accumulators for errors
float sumErrorValue = 0, sumError = 0, squaredError = 0;

// For each sample in data
for (int row = @; row < n; row++)

{
float x = data[row, 0];
float y = data[row, 1];
// Prediction and error calculation
float prediction = a * x + b;
float error = prediction - y;
// Accumulate squared error and parts needed for gradient calculation
squaredError += error * error;
sumErrorValue += error * x;
sumError += error;

}

// Calculate gradients (partial derivatives of MSE)
float deltaA
float deltaB

2.0f / n * sumErrorValue;

2.0f / n * sumError;

// Update regression parameters
a -= LearningRate * deltaA;
b -= LearningRate * deltaB;

if (iteration % PrintEvery == 0)

{
// MSE
float meanSquaredError = squaredError / n;

Console.WritelLine($"Iteration: {iteration,5} | MSE: {meanSquaredError,10:F5} | OMSE/da:
{deltaA,10:F4} | OMSE/ob: {deltaB,10:F4} | a: {a,9:F4} | b: {b,9:F4}");
}

// 5. Output learned parameters

Console.WriteLine();
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Console.WriteLine($"{"Learned parameters:",-20} a = {a,9:F4} | b = {b,9:F4}");
Console.WriteLine($"{"Expected parameters:",-20} a = {-2,9:F4} | b = {120,9:F4}");
Console.ReadLine();

Listing 1.1. Implementacja regresji liniowej w C# przy uzyciu metody spadku gradientowego

Na rysunku 1.2 mozemy zobaczy¢, ze po 35 tysigcach iteracji wartosci wspotczynnikdw regres;ji liniowej (
a = —1.9943 i b = 119.7917) zblizyty sie do oczekiwanych wartosci (a = —2 i b = 120).

Iteration: 10000
Iteration: 11000
Iteration: 12000
Iteration: 13000
Iteration: 14000
Iteration: 15000
Iteration: 16000
Iteration: 17000
Iteration: 18000
Iteration: 19000

69,13258 9MSE/da: 9MSE/db:

48,6 06855 OMSE/9a: OMSE/db:
33,42237 OMSE/da: OMSE/ab:
23,23884 oMSE/da: oMSE/ab:
16,15813 9MSE/da: 9MSE/db:
11,23496 9MSE/da: oMSE/ab:
7,81183 9MSE/9a: OMSE/0b:

H 5,43162 9MSE/da: 9MSE/db:
MSE:  3,77660 | OMSE/da: AMSE/ab:
MSE: 2,62591 OMSE/da: OMSE/ab:
Iteration: 20000 MSE: 1,82582 oMSE/da: oMSE/ab:
Iteration: 21000 | MSE: 1,26958 | QMSE/da: 9MSE/db:

| 100, 5041
|
|
|
|
|
|
|
|
|
|
|
Iteration: 22000 | MSE: 0,88270 AMSE/da: 9MSE/ab:
|
|
|
|
|
|
|
|
|
|
|
|
|

103,7433
106, 4443
108, 6966
110,5746
112,1406
113, 4ued
114,5353
115, 4433
116,2004
116,8317
117,3580
117,7976
118,1630
118, 4683
118, 7227
118,9349
119,1118
119,2594
119,3824
119, 4849
119, 57604
119, 6421
119, 7010
119, 7505
119,7917

Iteration: 23000 | MSE: 0,61380 | 9MSE/9a: OMSE/db:
Iteration: 24000 MSE: 0,42674 AMSE/da: 9MSE/db:
Iteration: 25000 | MSE: ©,29672 | 9MSE/da: OMSE/db:
Iteration: 26000 | MSE: 0,20633 | 3aMSE/da: 9MSE/db:
Iteration: 27000 MSE: ©,14350 oMSE/da: oMSE/ab:
Iteration: 28000 | MSE: 0,09976 | BaMSE/da: 9MSE/ab:
Iteration: 29000 MSE: 0,06938 AMSE/da: 9MSE/db:
Iteration: 30000 | MSE: ©,0u4825 | 9MSE/9a: OMSE/db:
Iteration: 31000 MSE: 0,03357 OMSE/da: OMSE/db:
Iteration: 32000 | MSE: ©,02329 | 9MSE/da: O9MSE/db:
Iteration: 33000 | MSE: 0,01626 | aMSE/da: 9MSE/db:
Iteration: 34000 MSE: 0,01132 oMSE/da: oMSE/ab:
Iteration: 35000 | MSE: 0,00789 | OaMSE/da: oMSE/ab:

U T T T VI U T I VO T LIV U I T U T T TR U T ]
L= pilw il = gl = e il v il = il il il il e il w il i i i i i v i v il = = = il

Learned parameters: a -1,9943 | b 119,7917
Expected parameters: a -2,0000 | b 120,0000

Rysunek 1.2. Wartosci parametrow regresji liniowej i MSE po 35 tysigcach iteragji

(0 NOTE

Port powyzszego kodu do Delphi Object Pascal mozna znalez¢ tutaj.

1.4. Podsumowanie

W tym rozdziale omoéwilismy podstawy regresji liniowej, w tym metode spadku gradientowego, ktéra
wykorzystamy w kolejnych rozdziatach podczas uczenia sieci neuronowych.

1.5. Dodatek

1.5.1. Zupa z gwozdzia (czyli wyprowadzanie wzorow)

Ponizej, dla kompletnosci opisu, przedstawiono wyprowadzenia wzoréw na pochodne funkcji MSE wzgledem
wspotczynnikéw a (wzor 1.10) i b (wzédr 1.13):
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1.5.2. Skrypty do odtworzenia wykresow

Caly niniejszy artykut jest ilustrowany implementacjg w C# (taki zreszta jest jeden z jego celow), ale akurat w
przypadku wykresdw najprostsze i najszybsze jest skorzystanie z Pythona. Ponizej znajduje sie kod przydatny
do odtworzenia wykresoéw z tego rozdziatu.

Dla wykresu 1.1:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Training data: y = -2 * x + 120

X = np.array([10, 20, 30, 40, 50])
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-2 * x + 120

y_true
# Grid

a_vals = np.linspace(-5, 1, 100)
b_vals = np.linspace(100, 140, 100)

A, B = np.meshgrid(a_vals, b_vals)

# MSE calculation

MSE = np.mean((A * x[:, None, None] + B - y_true[:, None, None]) ** 2, axis=0)
# Chart

fig = plt.figure()
ax = fig.add_subplot(111, projection="'3d")

# Wireframe (net) only:

ax.plot_wireframe(A, B, MSE, color='brown', linewidth=0.5, alpha=0.5)
ax.set_xlabel('a")

ax.set_ylabel('b")

ax.set_zlabel('MSE")

plt.show()

Listing 1.2

Dla wykresow 1.3 i 1.4:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Training data: y = -2 * x + 120

X = np.array([10, 20, 30, 40, 50])
y_true = -2 * x + 120

# Grid
a_vals = np.linspace(-2, 2, 100)
b_vals = np.linspace(-30, 30, 100)

A, B = np.meshgrid(a_vals, b_vals)

# MSE calculation
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MSE = np.mean((A * x[:, None, None] + B - y true[:, None, None]) ** 2, axis=@)
# Chart

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d")

# Wireframe

ax.plot_wireframe(A, B, MSE, color='brown', linewidth=0.5, alpha=0.5)
ax.set_xlabel('a")

ax.set_ylabel('b")

ax.set_zlabel('MSE")

# Adding a tangent plane at point (a0=0, bo=0)

# Plane equation: Z = grad_a * (A - a@) + grad b * (B - b@) + MSE@

# MSEQ is the MSE at point (a@, bo)

grad_a = -2800

grad_b = -120

ad, bo = 0, 0

MSE@ = np.mean((a@ * x + b0 - y true) ** 2)

tangent_plane = grad_a * (A - a@) + grad_b * (B - b@) + MSE@

# Drawing the tangent plane

ax.plot_surface(A, B, tangent_plane, color='cyan', alpha=0.4)

# Add the red point (0, ©, MSEQ)

ax.scatter(a@, be, MSEQ, color='red', s=50, label='Punkt (0, @0, MSEQ)')
# Add the green point (1.4, 0.06, MSE1)

al, bl = 1.4, 0.06

MSE1 = np.mean((al * x + bl - y true) ** 2)

ax.scatter(al, bl, MSE1l, color='green', s=50, label='Punkt (1.4, ©.06, MSE1l)")

# Printing the gradients and MSE values

print(f"Gradient a: {grad_a}, Gradient b: {grad_b}, MSE at (@, ©): {MSE@}")
print(f"MSE at (1.4, 0.06): {MSE1}")

plt.show()

Listing 1.3
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See you next time! .
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Last modified: 2025-12-22
Title: 1. Prosta regresja liniowa

Tags: [C#] [Python] [Sieci neuronowe] [Regresja liniowa] [Funkcja liniowa]
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2. Po co nam macierze?

W poprzednim rozdziale zajmowalismy sie prosta regresja liniowa. Teraz rozbudujemy nieco przyktad
tam umieszczony i dodamy kilka dodatkowych zmiennych niezaleznych.

2.1. Przyktad z trzema zmiennymi niezaleznymi (wieloraka
regresja liniowa)

Zatézmy, ze mamy nastepujacy zbiér danych:

1 T2 L3 Yy
1 2 1 12
2 1 2 10
3 3 1 19
4 2 3 16
1 4 2 17

Tabela 2.1. Zbiér danych do regresji liniowej z trzema zmiennymi niezaleznymi
Model regres;ji liniowej bedzie wowczas wygladat nastepujaco:
y=a1-x1+az-x2+az-z3+b

Wprowadzmy teraz zmiany w listingu 1.1 z poprzedniego rozdziatu, tak aby uwzgledni¢ powyzsza
modyfikacje. W miejsce programistycznej zmiennej a wprowadzimy zmienne ail, a2 i a3 oraz
zmodyfikujemy kod tak, aby mozna byto na ich podstawie obliczy¢ gradient.

(0 NOTE

Uzywam sformutowania "zmienna programistyczna", aby odroznic je od zmiennych
matematycznych (niezaleznych i zaleznych) uzywanych w opisie modelu.

Po wspomnianych wyzej zmianach kod, ktory implementuje teraz wieloraka regresje liniowa, wyglada
nastepujaco:

// Set the hyperparameters for the model
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const float LearningRate = 0.0005f;
const int Iterations = 35_000;

const int PrintEvery = 1_000;

// Prepare training data
// Each inner array represents a sample: [x1, x2, X3, y]
// We will try to find the relationship: y = 2*x1 + 3*x2 - 1*x3 + 5

float[,] data = new float[,] {

{1, 2, 1, 12}, // y = 2*1 + 3*2 - 1¥1 + 5 = 12
{2, 1, 2, 10}, // etc.

{3, 3, 1, 19},

{4, 2, 3, 16},

{1, 4, 2, 17}

}s
// 1. Initialize model parameters

// Coefficients for the independent variables (x1, x2, x3) and the bias term
float al = 0, a2 = 9, a3 = 9;
float b = 0;

// Number of samples
int n = data.GetLength(9);

// 2. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)

{
// Initialize accumulators for errors and gradients for this iteration
float sumSquaredError = 0;
float sumErrorForAl =

3

float sumErrorForA2 =

J

® 0 ®

float sumErrorForA3 5

float sumErrorForB = 0;

// For each sample in the data
for (int row = ©; row < n; row++)
{
// Get the independent variables (features) and the dependent variable (target)
float x1 = data[row, 0];
float x2 = data[row, 1];
float x3 = data[row, 2];
float y = data[row, 3];

// Prediction and error calculation
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float prediction = al * x1 + a2 * x2 + a3 * x3 + b;
float error = prediction - y;

// Accumulate squared error for MSE calculation
sumSquaredError += error * error;

// Accumulate parts needed for gradient calculation
sumErrorForAl += error * x1;

sumErrorForA2 += error * x2;

sumErrorForA3 += error * x3;

sumErrorForB += error;

// Calculate gradients (partial derivatives of MSE)
// OMSE/dal = 2/n * Z(error * x1)

float deltaAl 2.0f / n * sumErrorForAl;

float deltaA2 2.0f / n * sumErrorForA2;

float deltaA3 2.0f / n * sumErrorForA3;

float deltaB = 2.0f / n * sumErrorForB;

// Update regression parameters using gradient descent
al -= LearningRate * deltaA1l;

a2 -= LearningRate * deltaA2;

a3 -= LearningRate * deltaA3;

b -= LearningRate * deltaB;

if (iteration % PrintEvery == 0)
{
// MSE
float meanSquaredError = sumSquaredError / n;

Console.WritelLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | al:
{al,8:F4} | a2: {a2,8:F4} | a3: {a3,8:F4} | b: {b,8:F4}");
}

// 3. Output learned parameters

Console.WriteLine("\n--- Training Complete (Variables) ---");
Console.WriteLine($"{"Learned parameters:",-20} al = {al,9:F4} | a2
{a3,9:F4} | b = {b,9:F4}");

Console.WriteLine($"{"Expected parameters:",-20} al = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

{a2,9:F4} | a3 =

Listing 2.1. Wieloraka regresja liniowa z trzema zmiennymi niezaleznymi
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(0 NOTE

Kod zrédtowy przyktadow zawartych w niniejszym rozdziale znajduje sie na GitHub.

Efekt dziatania programu z listingu 2.1 przedstawiony zostat na ponizszej ilustragji:

Iteration: 13000
Iteration: 14000
Iteration: 15000
Iteration: 16000
Iteration: 17000
Iteration: 18000
Iteration: 19000
Iteration: 20000
Iteration: 21000
Iteration: 22000 MSE: ©,08515 al:
Iteration: 23000 MSE: ©,07586 al:

| | al:
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Iteration: 24000 | MSE: ©,06759 | al:
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

al:
al:
al:
al:
al:
al:
al:
al:

MSE: ©0,24071
MSE: ©,21444
MSE: ©,19105
MSE: ©0,17021
MSE: ©,15165
MSE: ©0,13511
MSE: ©0,12038
MSE: ©0,10726
MSE: ©0,09556

Iteration: 25000 MSE: ©,06022 al:
Iteration: 26000 | MSE: ©0,05366 | al:
Iteration: 27000 | MSE: 0,04781 al:
Iteration: 28000 MSE: ©,04260 al:
Iteration: 29000 | MSE: ©0,03795 | al:
Iteration: 30000 | MSE: ©0,03382 | al:
Iteration: 31000 MSE: ©0,03013 al:
Iteration: 32000 | MSE: ©0,02685 | al:
Iteration: 33000 MSE: ©0,02392 al:
Iteration: 34000 | MSE: ©0,02131 al:
Iteration: 35000 | MSE: ©0,01899 | al:

(= piil= il = il w il e il = il il il = i il e il = il pil = il = il gl = il = il v il = gl v il = pl =

-—— Training Complete (Variables) -—-
Learned parameters: al = 2,0413 | a2
Expected parameters: al = 2,0000 | a2

Rysunek 2.1. Wyniki regresji liniowej z trzema zmiennymi niezaleznymi

Widzimy, ze po wykonaniu zatozonej liczby iteracji (Iterations = 35_000) wyliczone zostaty parametry
regresji liniowej a1, as, ag oraz b. Sg one zblizone do oczekiwanych wartoscia; = 2, a2 = 3, a3 = —1
oraz b = b.

2.2. Tablice zamiast pojedynczych zmiennych

Na listingu 2.1 pojawity sie kolejne zmienne, ktére odpowiadaja za obliczanie predykgji, bteddw i
gradientow. Zamiast x, a, sumErrorValue i deltaA mamy teraz x1, x2, x3, al, a2, a3, sumErrorForAl,
sumErrorForA2, sumErrorForA3, deltaAl, deltaA2 i deltaA3. Jak tatwo mozna sie domysle¢, przy kazdym
nowym wspodtczynniku musielibysmy dodawac kolejne odpowiadajace mu zmienne do kodu.

Aby tego unikna¢, mozemy uzyc tablic. Wowczas zamiast operowania na kazdej trojce zmiennych
programistycznych, np. a1, a2, a3, bedziemy operowac na pojedynczych tablicach.
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Propozycja takiego rozwigzania jest nastepujaca (pominieto czesci wspdlne - state i inne deklaracje -
zamieszczone w poprzednim listingu):

// 1. Initialize model parameters

// Number of samples and coefficients
int n = data.GetLength(0);
int numCoefficients = data.GetLength(1l) - 1;

// Coefficients for the independent variables and the bias term
float[] a = new float[numCoefficients];
float b = 0;

// 2. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)
{

// Initialize accumulators for errors and gradients for this iteration

float sumSquaredError = 0;

float[] sumErrorForA = new float[numCoefficients]; // Accumulator for each coefficient's
gradient part

float sumErrorForB = @; // Accumulator for the bias's gradient part

// For each sample in the data
for (int row = ©@; row < n; row++)
{
// Separate the independent variables (features) (x) from the dependent variable
(target) (y)
float[] x = new float[numCoefficients];
for (int i = @; i < numCoefficients; i++)
{
x[i] = data[row, i];

}

float y = data[row, numCoefficients];

// Prediction and error calculation
// prediction = al*x1l + a2*x2 + a3*x3 + b
float prediction = b;
for (int i = ©; i < numCoefficients; i++)
{

prediction += a[i] * x[i];

}
float error = prediction - y;

// Accumulate squared error for MSE calculation
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sumSquaredError += error * error;

// Accumulate parts needed for gradient calculation
// For each ai, the gradient part is (error * xi)
for (int i = @; i < numCoefficients; i++)
{

sumErrorForA[i] += error * x[i];
}
// For the bias, the gradient part is just the error
sumErrorForB += error;

// Calculate gradients (partial derivatives of MSE)
// OMSE/dai = 2/n * X(error * xi)
float[] deltaA = new float[numCoefficients];
for (int i = ©; i < numCoefficients; i++)
{
deltaA[i] = 2.0f / n * sumErrorForA[i];

// OMSE/db = 2/n * X(error)
float deltaB = 2.0f / n * sumErrorForB;

// Update regression parameters using gradient descent
for (int i = @; i < numCoefficients; i++)

{
a[i] -= LearningRate * deltaA[i];

b -= LearningRate * deltaB;

if (iteration % PrintEvery == 0)

{
// MSE

float meanSquaredError = sumSquaredError / n;
Console.WritelLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | ail:
{a[@],8:F4} | a2: {a[1],8:F4} | a3: {a[2],8:F4} | b: {b,8:F4}");
}
// 3. Output learned parameters
Console.WriteLine("\n--- Training Complete (Tables) ---");

Console.WritelLine($"{"Learned parameters:",-20} al = {a[@],9:F4} | a2 = {a[1],9:F4} | a3 =
{a[2],9:F4} | b = {b,9:F4}");
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Console.WritelLine($"{"Expected parameters:",-20} al = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

Listing 2.2. Wieloraka regresja liniowa z trzema zmiennymi niezaleznymi - wersja z wykorzystaniem tablic

Efekt dziatania tego programu (rysunek 2.2) jest taki sam jak poprzednio (rysunek 2.1), ale kod jest
krotszy, no i oczywiscie bardziej elastyczny. Wystarczy zmieni¢ liczbe kolumn w tablicy data, aby - w
miare potrzeb - doda¢ lub usung¢ zmienne niezalezne.

Iteration: 13000
Iteration: 14000
Iteration: 15000
Iteration: 16000
Iteration: 17000
Iteration: 18000
Iteration: 19000
Iteration: 20000
Iteration: 21000
Iteration: 22000 | MSE: ©0,08515
Iteration: 23000 | MSE: ©0,07586

| MSE: ©,2u4071
I
I
I
I
I
I
I
I
I
I
Iteration: 24000 | MSE: ©,06759
I
I
I
I
I
I
I
I
I
I
I

MSE: ©,21444
MSE: ©0,19105
MSE: ©0,17021
MSE: ©0,15165
MSE: ©0,13511
MSE: ©0,12038
MSE: ©0,10726
MSE: ©,09556

Iteration: 25000 | MSE: 0,06022
Iteration: 26000 | MSE: 0,05366
Iteration: 27000 MSE: ©0,04781
Iteration: 28000 MSE: ©0,04260
Iteration: 29000 | MSE: ©0,03795
Iteration: 30000 | MSE: ©0,03382
Iteration: 31600 | MSE: ©0,03013
Iteration: 32000 | MSE: ©0,02685
Iteration: 33000 | MSE: ©0,02392
Iteration: 34000 | MSE: ©0,02131
Iteration: 35000 | MSE: ©0,01899

(= pil= il = il = gl = il v il w il w il = il v il = gl = il il il = o v v v i = =

——— Training Complete (Tables) ——
Learned parameters: al = 2,0413
Expected parameters: al = 2,0000

Rysunek 2.2. Wyniki regresji liniowej z trzema zmiennymi niezaleznymi - wersja z wykorzystaniem tablic

2.3. Zamiast tablic - macierze

Kolejnym krokiem w naszej wedréwce po regresji wielorakiej bedzie wykorzystanie macierzy. Zamiast
tablic jednowymiarowych uzyjemy tablic dwuwymiarowych (macierzy), a co za tym idzie zamiast dziatan
na skalarach (poszczegdlnych elementach tablicy) bedziemy wykonywac dziatania na macierzach
(operacje macierzowe).

Ponizej znajduje sie opis operacji macierzowych, ktére na potrzeby niniejszego rozdziatu
zaimplementowano w klasie ArrayExtensions:

e Add: dodaje wartos¢ skalarng do kazdej komorki macierzy;
® Mean: oblicza srednig wszystkich komorek macierzy;
e Multiply: mnozy kazdg komdrke macierzy przez wartosc skalarng;
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e MultiplyDot: mnozy macierz przez inng macierz przy uzyciu iloczynu skalarnego (dot product);
e Power: podnosi kazdg komérke macierzy do potegi;

e Subtract: odejmuje wartosci z drugiej macierzy od pierwszej;

e sum: oblicza sume wszystkich komorek macierzy;

® Transpose: transponuje macierz, zamieniajac wiersze na kolumny i odwrotnie.

(0 NOTE

Kod zrédtowy klasy ArrayExtensions znajduje sie na GitHub a takze w Dodatku na koncu
rozdziatu.

Tak wyglada kod implementujacy budowe modelu wielorakiej regresji liniowej z wykorzystaniem
macierzy:

// 1. Convert data to matrices

// Number of samples and coefficients
int n = data.GetLength(9);
int numCoefficients = data.GetlLength(1) - 1;

float[,] X = new float[n, numCoefficients];
float[,] Y = new float[n, 1];

// Prepare the feature matrix X and the target vector Y
for (int row = ©; row < n; row++)

{
for (int j = ©; j < numCoefficients; j++)
{
X[row, j] = data[row, j];
}
Y[row, @] = data[row, numCoefficients];
}

// 2. Initialize model parameters

// Coefficients for the independent variables and the bias term
float[,] A = new float[numCoefficients, 1];

float b = 0;

// 3. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)

{
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// Prediction and error calculation

// Make predictions for all samples at once: predictions = X * a + b
float[,] predictions = X.MultiplyDot(A).Add(b);

// Calculate errors for all samples: errors = predictions - Y
float[,] errors = predictions.Subtract(Y);

// Calculate the gradient for the coefficients 'a': 9MSE/da = 2/n * X~T * errors

// X.Transpose() aligns features with their corresponding errors for the dot product

// We can pre-calculate X.Transpose() and (2.0f / n) for efficiency, but let's leave it
as is for clarity

float[,] deltaA = X.Transpose().MultiplyDot(errors).Multiply(2.0f / n);

// OMSE/db = 2/n * sum(errors)
float deltaB = 2.0f / n * errors.Sum();

// Update regression parameters using gradient descent
A = A.Subtract(deltaA.Multiply(LearningRate));
b -= LearningRate * deltaB;

if (iteration % PrintEvery == 0)
{

// Calculate the Mean Squared Error loss: MSE = mean(errors”2)
float meanSquaredError = errors.Power(2).Mean();

Console.WriteLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | al:
{A[0, ©],8:F4} | a2: {A[1, @],8:F4} | a3: {A[2, ©],8:F4} | b: {b,8:F4}");
}

// 4. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices) ---");

Console.WriteLine($"{"Learned parameters:",-20} al = {A[0Q, ©],9:F4} | a2 = {A[1, ©],9:F4} |
a3 = {A[2, @],9:F4} | b = {b,9:F4}");

Console.WritelLine($"{"Expected parameters:",-20} al = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

Listing 2.3. Wieloraka regresja liniowa z trzema zmiennymi niezaleznymi - wersja z wykorzystaniem
maclierzy
Gtowne zmiany w stosunku do poprzednich wers;ji:

e Zamiast tablicy data mamy teraz dwie macierze: X (z niezaleznymi zmiennymi) i Y (z zalezna

zmiennag).
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e Wspotczynniki regresji sg teraz przechowywane w macierzy A, ktéra ma rozmiar numCoefficients x
1.

e Obliczenia predykgcji, btedow i gradientow sa wykonywane na catych macierzach.

e Usuniecie petli foreach (iteracji po poszczegdlnych obserwacjach) na rzecz operacji macierzowych,
co sprawia, ze kod jest bardziej zwiezty i czytelny.

| jeszcze jedna uwaga na temat powyzszego programu. Wyrazenie
X.Transpose().MultiplyDot(errors).Multiply(2.8f / n) to odpowiednik wzoru na gradient zapisanego
w notacji macierzowej (poréwnaj wzér 1.10 z poprzedniego rozdziatu):

0 2
—MSE=-X"(P-Y 2.1
- ~X7(P-Y) (2.1)
Skad bierze sie transpozycja macierzy x (XT)? Jest ona niezbedna, aby wymiary (wiersze x kolumny)
macierzy sie zgadzaty. Mnozac macierz cech po transpozycji (k x n, gdzie k to liczba cech, a n to liczba
probek) przez wektor btedéw (n x 1), otrzymujemy wektor gradientow (k x 1), w ktorym kazdy element

odpowiada gradientowi dla jednego wspotczynnika a.

2.4. Jeszcze prosciej? Wiaczenie wyrazu wolnego do
macierzy

Zauwazmy, ze wyraz wolny b wciaz jest oddzielng zmienng. Mozemy go wiaczy¢ do macierzy
wspotczynnikdw A, stosujac pewng sztuczke: dodajemy do naszej macierzy danych x dodatkowa kolumne
wypetniong jedynkami.

Dzieki temu wyraz wolny b stanie sie kolejnym wspotczynnikiem regresji, a my nie bedziemy musieli go
juz osobno obstugiwac w kodzie. Ponizej znajduje sie zmodyfikowany kod wedtug tego podejscia:

// 1. Convert data to matrices with a bias term

// Number of samples and coefficients
int n = data.GetLength(0);
int numCoefficients = data.GetLength(1l) - 1;

float[,] XAndl = new float[n, numCoefficients + 1]; // +1 column for bias term
float[,] Y = new float[n, 1];

// Prepare the feature matrix XAndl with the bias term and the target vector Y
for (int row = @; row < n; row++)

{
for (int j = @; j < numCoefficients; j++)
{
XAnd1l[row, j] = data[row, j];
}
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XAnd1[row, numCoefficients] = 1; // Bias term
Y[row, O] = data[row, numCoefficients];

// 2. Initialize model parameters

// Coefficients for the independent variables and the bias term
float[,] AB = new float[numCoefficients + 1, 1];

// 3. Training loop

for (int iteration = 1; iteration <= Iterations; iteration++)

{

// Prediction and error calculation

// Make predictions for all samples at once: predictions = XAndl * AB
float[,] predictions = XAndl.MultiplyDot(AB);

// Calculate errors for all samples: errors = predictions - Y
float[,] errors = predictions.Subtract(Y);

// Calculate the gradient for the coefficients 'AB': OMSE/JAB = 2/n * XAnd1”T * errors

// XAndl.Transpose() aligns features and the additional column for the bias term with
their corresponding errors for the dot product

// We can pre-calculate XAndl.Transpose() and (2.0f / n) for efficiency, but let's leave
it as is for clarity

float[,] deltaAB = XAndl.Transpose().MultiplyDot(errors).Multiply(2.0f / n);

// Update regression parameters using gradient descent
AB = AB.Subtract(deltaAB.Multiply(LearningRate));

if (iteration % PrintEvery == 0)

{
// Calculate the Mean Squared Error loss: MSE = mean(errors”2)
float meanSquaredError = errors.Power(2).Mean();

Console.WritelLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | al:
{AB[0©, ©],8:F4} | a2: {AB[1, ©],8:F4} | a3: {AB[2, 0],8:F4} | b: {AB[3, 0],8:F4}");
}

// 4. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices with Bias) ---");
Console.WriteLine($"{"Learned parameters:",-20} al = {AB[@, ©],9:F4} | a2 = {AB[1, 0],9:F4}

| a3 = {AB[2, ©],9:F4} | b = {AB[3, 0],9:F4}");
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Console.WritelLine($"{"Expected parameters:",-20} al = {2,9:F4} | a2 = {3,9:F4} | a3 =
{-1,9:F4} | b = {5,9:F4}");

Listing 2.4. Wieloraka regresja liniowa z trzema zmiennymi niezaleznymi - wersja z wtgczonym wyrazem
wolnym do macierzy

(0 NOTE

Odpowiednik powyzszego kodu dla Delphi Object Pascal mozna znalez¢ tutaj.

2.5. Podsumowanie

W tym rozdziale omowilismy, jak mozna wykorzysta¢ macierze do implementacji wielorakiej regresji
liniowej. Zaczelismy od prostego przyktadu z trzema zmiennymi niezaleznymi, a nastepnie przeszlismy
do bardziej zaawansowanych technik, takich jak uzycie tablic i macierzy do przechowywania danych i
wspotczynnikdw regresji. Za wisienke ¢e Na torcie = uznaliSmy wtgczenie wyrazu wolnego do macierzy

2.6. Dodatek

Ponizej znajduje sie kod zrodtowy klasy ArrayExtensions, w zakresie, ktory obejmuje implementacje
operacji macierzowych uzytych w powyzszym przyktadzie. Mitego kompilowania!

public static class ArrayExtensions
{
/// <summary>
/// Adds a scalar value to each element of the matrix.
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float[,] Add(this float[,] source, float scalar)
{
int rows = source.GetlLength(0);
int columns = source.GetLength(1);
float[,] res

new float[rows, columns];

for (int row = @; row < rows; row++)

{
for (int col = 0; col < columns; col++)
{
res[row, col] = source[row, col] + scalar;
}
}
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return res;

/// <summary>

/// Calculates the mean of all elements in the matrix.

/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Mean(this float[,] source)

=> source.Sum() / source.Length;

/// <summary>

/// Multiplies each element of the matrix by a scalar value.

/// </summary>
/// <remarks>

/// Complexity: O(n * m), where n = rows of <paramref name="source"/>, m = columns of
<paramref name="source"/>

/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]

public static float[,] Multiply(this float[,] source, float scalar)

{
int rows = source.GetlLength(0);
int columns = source.GetLength(1);
float[,] res = new float[rows, columns];
for (int row = @; row < rows; row++)
{
for (int col = 0; col < columns; col++)
{
res[row, col] = source[row, col] * scalar;
}
}
return res;
}

/// <summary>

/// Multiplies the current matrix with another matrix using the dot product.

/// </summary>
/// <remarks>

/// Complexity: O(n * m * p), where n = rows of <paramref name="source"/>, m
dimension, p = columns of <paramref name="matrix"/>

/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]

public static float[,] MultiplyDot(this float[,] source, float[,] matrix)

{

Debug.Assert(source.GetLength(1l) == matrix.GetLength(0));
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int matrixColumns = matrix.GetLength(1);

int rows = source.GetlLength(0);
int columns = source.GetLength(1);

float[,] res = new float[rows, matrixColumns];

for (int i = @; i < rows; i++)

{
for (int j = ©; j < matrixColumns; j++)
{
float sum = 0;
for (int k = @; k < columns; k++)
{
sum += source[i, k] * matrix[k, j];
}
res[i, j] = sum;
}
}

return res;

/// <summary>

/// Raises each element of the matrix to the specified power.

/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]

public static float[,] Power(this float[,] source, int scalar)

{

int rows = source.GetlLength(9);
int columns = source.GetLength(1);
float[,] res = new float[rows, columns];

for (int row = @; row < rows; rowt+)

{

for (int col = @; col < columns; col++)

{

res[row, col] = MathF.Pow(source[row, col], scalar);

return res;

/// <summary>

34 /96



/// Subtracts the elements of the specified matrix from the current matrix.
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float[,] Subtract(this float[,] source, float[,] matrix)
{
Debug.Assert(source.GetLength(0) == matrix.GetLength(0));
Debug.Assert(source.GetlLength(1l) == matrix.GetLength(1));

int rows = source.GetlLength(0);
int columns = source.GetLength(1);

float[,] res = new float[rows, columns];

for (int 1 = @; i < rows; i++)

{
for (int j = @; j < columns; j++)
{
res[i, j] = source[i, j] - matrix[i, j];
}
}

return res;

/// <summary>

/// Calculates the sum of all elements in the matrix.
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sum(this float[,] source)

{
// Sum over all elements.
float sum = 0;
int rows = source.GetlLength(0);
int cols = source.GetlLength(1);
for (int row = @; row < rows; rowt+)
{
for (int col = @; col < cols; col++)
{
sum += source[row, col];
}
}
return sum;
}

/// <summary>
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/// Transposes the matrix by swapping its rows and columns.

/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float[,] Transpose(this float[,] source)

{
int rows = source.GetlLength(0);
int columns = source.GetLength(1);
float[,] array = new float[columns, rows];
for (int 1 = @; i < rows; i++)
{
for (int j = ©; j < columns; j++)
{
array[j, i] = source[i, j];
}
}
return array;
}

Listing 2.5. Klasa ArrayExtensions implementujgca operacje macierzowe

Created: 2025-06-28
Last modified: 2025-12-22
Title: 2. Po co nam macierze?

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze]
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3. Dane Boston Housing

W niniejszym rozdziale zajmiemy sie analizg danych rzeczywistych pochodzacych ze zbioru Boston
Housing (GitHub ). Postuzymy w tym celu omowiong juz wczesniej wieloraka regresje liniowa.

Aby zbadac jakos¢ utworzonego modelu regresji, podzielimy zbiér dostepnych danych na zbiér uczacy i
zbidr testowy (na ktorym ocenimy jakosc predykcji).

W rozdziale kolejnym przeprowadzimy analogiczne badanie, korzystajac z samodzielnie skonstruowanej

prostej sieci neuronowej. Nastepnie poréwnamy wyniki obu metod — jakos¢ predykcji generowanych
przez sie¢ neuronowa zestawimy z wynikami otrzymanymi z modelu regresji przy identycznym podziale
danych (trening/test).

3.1. Zbior danych Boston Housing

Zbidr Boston Housing zawiera informacje o cenach domow w réznych dzielnicach Bostonu oraz cechach
tych dzielnic, ktére moga wptywac na ceny nieruchomosci. Zbior ten jest czesto wykorzystywany do
celéw edukacyjnych i badawczych w dziedzinie uczenia maszynowego i statystyki. Sktada sie on z 506
rekordow (prébek), z ktorych kazdy zawiera 13 cech (zmiennych niezaleznych) oraz jedng zmienna
docelowa (mediana cen doméw [tys. USD]). Doktadniejszy opis znajduje sie tuw.

Ponizej przedstawiono pierwszych 20 rekordow z tego zbioru:
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0.00632
0.02731
0.02729
0.03237
0.06905
0.02935
0.08829
0.14455
021124
0.17004
022439
011747
0.09373
0.62976
0.6379%
0.62739
1.05393
0.7842

0.80271

Rysunek 3.1. Pierwsze rekordy ze zbioru Boston Housing

3.2. Wieloraka regresja liniowa

z uzyciem macierzy na omawianym zbiorze danych. Implementacje te przedstawia ponizszy listing (petna
wersja znajduje sie na GitHub@):

// Define hyperparameters for both routines

const float LearningRate = 0.0005f;
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const int Iterations = 48 000;
const int PrintEvery = 2_000;
const float TestSplitRatio = 0.7f;
const int RandomSeed = 251113;

// 1. Get data

(float[,] trainData, float[,] testData) = GetData();

// 2. Copy trainData and testData to matrices with bias term
int inputFeatureCount = trainData.GetLength(1) - 1;

int nTrain = trainData.GetLength(9);

int nTest = testData.GetLength(0);

float[,] XTrainAndl = new float[nTrain, inputFeatureCount + 1];
float[,] YTrain = new float[nTrain, 1];

float[,] XTestAndl = new float[nTest, inputFeatureCount + 1];
float[,] YTest = new float[nTest, 1];

// Prepare feature matrix XTrainAndl with bias term and target vector YTrain

for (int i = @; i < nTrain; i++)

{

for (int j = ©; j < inputFeatureCount; j++)

{

XTrainAndl[i, j] = trainData[i, j];

}

// Add bias term

XTrainAnd1[i, inputFeatureCount] = 1;

// Target values

YTrain[i, @] = trainData[i, inputFeatureCount];
}

// Prepare feature matrix XTestAndl with bias term and target vector YTest
for (int i = @; i < nTest; i++)

{
for (int j = ©; j < inputFeatureCount; j++)
{
XTestAnd1l[i, j] = testData[i, j];
}

// Add bias term
XTestAndl[i, inputFeatureCount] = 1;
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// Target values
YTest[i, @] = testData[i, inputFeatureCount];

// 3. Initialize model parameters

// Coefficients for our independent variables and the bias term initialized to zero
float[,] AB = new float[inputFeatureCount + 1, 1];

// 4. Training loop
float[,] XTrainAndlT = XTrainAndl.Transpose();

float twoOverN = 2.0f / nTrain;
for (int iteration = 1; iteration <= Iterations; iteration++)

{
// Prediction and error calculation
// Make predictions for all samples at once: predictions = XTrainAndl * AB
float[,] predictions = XTrainAndl.MultiplyDot(AB);
// Calculate errors for all samples: errors = predictions - YTrain
float[,] errors = predictions.Subtract(YTrain);
// Calculate gradient for coefficients 'AB': OMSE/JAB = 2/n * XTrainAndl~T * errors
float[,] deltaAB = XTrainAnd1T.MultiplyDot(errors).Multiply(twoOverN);
// Update regression parameters using gradient descent
AB = AB.Subtract(deltaAB.Multiply(LearningRate));
if (iteration % PrintEvery == 0)
{
// Calculate the Mean Squared Error loss: MSE = mean(errors”2)
float meanSquaredError = errors.Power(2).Mean();
if (float.IsNaN(meanSquaredError))
{
Console.WriteLine($"NaN detected at iteration {iteration}");
break;
}
Console.WritelLine($"Iteration: {iteration,6} | MSE: {meanSquaredError,8:F5} | al:
{AB[0@, ©],8:F4} | a2: {AB[1, ©],8:F4} | a3: {AB[2, ©],8:F4} | ... | b:
{AB[inputFeatureCount, 0],8:F4}");
}
}
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// 5. Output learned parameters

Console.WriteLine("\n--- Training Complete (Matrices with Bias on Boston Data) ---");
Console.WritelLine("Learned parameters:");

for (int i = 0; i < inputFeatureCount; i++)

{
Console.WriteLine($" a{i + 1,-2} = {AB[i, ©],8:F4}");
}
Console.WriteLine($" b = {AB[inputFeatureCount, ©],8:F4}");

Console.WritelLine();

Console.WriteLine("Sample predictions vs actual values:");
Console.WritelLine();

Console.WriteLine($"{"Sample No",14}{"Predicted",14}{"Actual”,14}");
Console.WritelLine();

// Show predictions for the test set

int[] showTestSamples = { @, 1, 2, nTest - 3, nTest - 2, nTest - 1 };
float[,] testPredictions = XTestAndl.MultiplyDot(AB);

for (int i = @; i < showTestSamples.Length; i++)

{
int testSampleIndex = showTestSamples[i];
float predicted = testPredictions[testSampleIndex, 0];
float actual = YTest[testSampleIndex, 0];
Console.WritelLine(
$"{testSampleIndex + 1,14}" +
$"{predicted,14:F4}" +
$"{actual,14:F4}"
)
}

// Show MSE for test data

float[,] testErrors = YTest.Subtract(testPredictions);

float testMeanSquaredError = testErrors.Power(2).Mean();
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine($"\nMSE on test data: {testMeanSquaredError:F5}");
Console.ResetColor();

Listing 3.1. Wieloraka regresja liniowa z uzyciem macierzy na zbiorze danych Boston Housing
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3.2.1. Pobieranie, standaryzowanie, i permutacja danych oraz ich
podziat na zbior uczacy i zbior testowy

W powyzszym listingu znalazta sie linia (float[,] trainData, float[,] testData) = GetData(), ktora
odpowiada za pobranie i przygotowanie danych do analizy. Wywotuje ona funkcje pokazang na listingu
3.2

static (float[,] TrainData, float[,] TestData) GetData()

{
float[,] bostonData = LoadCsv("..\\..\\..\\..\\..\\data\\Boston\\BostonHousing.csv");

// Number of independent variables
int inputFeatureCount = bostonData.GetLength(1l) - 1;

// Standardize each feature column (mean = @, stddev = 1) except the target variable
(last column)

// Note: the upper bound in Range is exclusive, so we use inputFeatureCount to exclude
the last column

bostonData.Standardize(@..inputFeatureCount);

// Permute the data randomly
bostonData.PermuteInPlace(RandomSeed);

// Return train and test data split by ratio
return bostonData.SplitRowsByRatio(TestSplitRatio);

Listing 3.2. Funkcja pobierajgca, standaryzujgca, permutujgca i dzielgca dane Boston Housing na zbior
uczgcy ( testowy

Jak widzimy, powyzszy kod:

taduje dane z pliku CSV,
standaryzuje cechy wejsciowe (zmienne niezalezne),

losowo permutuje dane,

dzieli dane na zbior uczacy i testowy wedtug okreslonego stosunku.

3.2.2. Standaryzacja cech wejsciowych

Zwrocmy uwage na wywotanie w powyzszej procedurze metody
bostonData.Standardize(0..numCoefficients), ktéra standaryzuje cechy wejsciowe (zmienne niezalezne)
do sredniej 0 i odchylenia standardowego 1. Standaryzacja danych jest istotnym etapem przygotowania
danych do trenowania modeli uczenia maszynowego, zwtaszcza algorytmow opartych na optymalizacji
gradientowej, poniewaz sprzyja szybszej i bardziej stabilnej konwergencji.
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Konwergencja algorytmu optymalizacyjnego to proces, w ktorym algorytm poprzez iteracyjne
aktualizacje parametréw stopniowo zbliza sie do optymalnego rozwigzania, czyli minimum funkg;ji straty.
Standaryzacja danych utatwia ten proces, poniewaz gdy cechy majg poréwnywalne skale, funkcja straty
ma lepsze wtasnosci geometryczne, co pozwala algorytmowi unikac zbyt duzych lub zbyt matych krokéw
aktualizacji parametrow.

W naszym wypadku, kod metody standardize wyglada nastepujaco:

public static void Standardize(this float[,] source, Range? columnRange = null)

{

int rows = source.GetLength(0);
int columns = source.GetlLength(1);

int beginColumn, endColumn;

if (columnRange is not null)

{
var (offset, length) = columnRange.Value.GetOffsetAndLength(columns);
beginColumn = offset;
endColumn = beginColumn + length;
}
else
{
beginColumn = 0;
endColumn = columns;
}

for (int col = beginColumn; col < endColumn; col++)

// Calculate mean
float sum = 0;
for (int row = @; row < rows; rowt+)

{

sum += source[row, col];

}

float mean = sum / rows;

// Calculate standard deviationFromMean
float sumOfSquares = 0;
for (int row = @; row < rows; rowt+)
{
float value = source[row, col] - mean;
sumOfSquares += value * value;

}
float stdDev = MathF.Sqrt(sumOfSquares / rows);
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if (stdDev == 0)
{

stdDev = 1; // To avoid division by zero

}

// Standardize values
for (int row = @; row < rows; row++)

{

source[row, col] = (source[row, col] - mean) / stdDev;

}

Listing 3.3. Metoda standaryzujgca kolumny macierzy do sredniej O i odchylenia standardowego 1

Metoda ta oblicza srednig i odchylenie standardowe dla kazdej kolumny w catym lub w okreslonym
zakresie (Range? columnRange), @ nastepnie standaryzuje wartosci w tej kolumnie.

3.2.2.1. Szybsza metoda obliczania odchylenia standardowego
Korzystajac z wtasnosci wariancji, mozemy obliczy¢ odchylenie standardowe nieco szybciej, bez
koniecznosci dwukrotnego przechodzenia przez dane. Wariancja jest zdefiniowana jako $rednia
kwadratow roznic wartosci od Sredniej:

e ) (3.1)

2

Powyzszy wzor mozna przeksztatci¢ do postaci:

S(z; — 7)? _ S (x? — 22,7 + %)

N N
e Yoz Y El
- N N N
E;,;? 7 2
= N* — 2% N 4z
g2 (3.2)
= ;“ — 2% - F + z°
2
— E;z _252_'_:1—:2
_ PEH =2
N

umozlwiajac wyliczenie wariancji w pojedynczym przebiegu przez dane (single pass), w ktérym obliczamy
sume wartosci (do obliczenia sredniej Z) i sume kwadratow wartosci (do obliczenia sredniej z kwadratéw
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2
wartosci %). Odchylenie standardowe jest pierwiastkiem kwadratowym z wariangji.

Oto przyktadowa implementacja wersji single pass (peten listing mozna znalez¢ na GitHub):

// Calculate standard deviation in a single pass
float sum = @, sumOfSquares = 0;
for (int row = ©; row < rows; row++)

{
float value = source[row, col];
sum += value;
sumOfSquares += value * value;
}

float mean = sum / rows;
float variance = (sumOfSquares / rows) - (mean * mean);
float stdDev = MathF.Sqgrt(variance);

Listing 3.4. Szybsza metoda obliczania odchylenia standardowego z wykorzystaniem wtasnosci wariancji ze
wzoru (3.2)

(i) NOTE

Podnoszenie do kwadratu realizujemy poprzez mnozenie value * value, zamiast uzycia funkgji
MathF.Pow(value, 2), poniewaz mnozenie jest szybsze niz wywotanie funkgji potegowania.

3.2.3. Efekt dziatania regresji liniowej na zbiorze Boston Housing

Ponizej przedstawiono efekt dziatania programu. Widzimy, ze w trakcie treningu modelu wartos¢ funkgji
straty (MSE) stopniowo maleje, co wskazuje na to, ze model uczy sie dopasowywac do danych
treningowych.
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Iteration: 22000
Iteration: 24000
Iteration: 26000
Iteration: 28000
Iteration: 30000
Iteration: 32000 MSE: 19, 4u466U al: -0,9491 a2: 1,3628
Iteration: 34000 MSE: 19,4u4374 al: -0,9534 a2: 1,3698

| MSE: 19,482u49 | |
I | I
I | I
I | I
I | I
I | I
I | I

Iteration: 36000 I MSE: 19,44154 I al: -0,9570 I a2: 1,3757
I | I
I | I
I | I
I | I
I I I

MSE: 19,47082
MSE: 19,46206
MSE: 19,45545
MSE: 19,45045

al: -0,9110
al: -0,9218
al: -0,9306
al: -0,9379
al: -0,9440

a2: 1,3007
a2: 1,3184
a2: 1,3328
a2: 1,347
a2: 1,3545

22,4733
22,4721
22,4711
22,4702
22,4695
22,4688
22,4682
22,4677
22,4673
22,4669
22,4666
22,1663
22,4661
22,4658

Iteration: 38000 MSE: 19,43987 al: -0,9601 a2: 1,3807
Iteration: 40000 MSE: 19,43856 al: -0,9628 a2: 1,3851
Iteration: 42000 MSE: 19,43758 al: -0,9651 a2: 1,3888
Iteration: 4UAOO MSE: 19,U43682 al: -0,9671 EVE 1,3920
Iteration: 46000 MSE: 19,43625 al: -0,9688 a2: 1,3948
Iteration: 48000 MSE: 19,u43581 al: -0,9702 a2: 1,3972

(s gl = pil= il gl w il v il = il = il = il il e il = = il =

——— Training Complete (Matrices with Bias on Boston Data) ---
Learned parameters:
al -0,9702

a2 1,3972

a3 -0,35u5

al 90,5873

ab -2,0043

a6 1,9746

a7 0,1827

a8 -3,4413

a9 2,7323
ale -2,3118
all -1,8305
al2 90,4663
al3 -3,8503

b 22,4658

Sample predictions vs actual values:

Sample No Predicted Actual

1 17,5248 20,2000

2 17,6183 20,6000

3 21,4478 18,6000

150 25,8629 50,0000

151 14,5508 14,5000

152 34,3006 33,8000

MSE on test data: 29,49182
Rysunek 3.2. Wyniki wielorakiej regresji liniowej na zbiorze Boston Housing

Dla zbioru uczgcego wartos¢ funkgji straty po 48 000 iteracjach wynosi MSE = 19.43581, cO 0znacza, ze

taki jest Sredni btad kwadratowy miedzy przewidywanymi a rzeczywistymi cenami doméw. Wyswietlane

sg rowniez wyuczone parametry regresji (wspotczynniki a1, a2, ..., a13 oraz wyraz wolny b). Najwiekszy (co
do wartosci bezwzglednej) wptyw na cene posiada cecha a13 = -3.8503, co dla danych Boston Housing
odpowiada zmiennej LSTAT (procent populacji o niskich dochodach).

Dla zbioru testowego MSE wynosi MSE = 29.49182, co jest wyzszag wartoscig niz dla zbioru uczacego.
W kolejnym rozdziale zobaczymy jak z tym samym problemem predykcji cen doméw na naszym zbiorze

danych poradzi sobie sie¢ neuronowa.

Created: 2025-11-09




Last modified: 2025-12-22
Title: 3. Dane Boston Housing

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze] [Boston Housing] [Standaryzacja danych]

47 /96



4. Pierwsza sieC heuronowa

W poprzednim rozdziale utworzyliSmy model wielorakiej regresji liniowej i zbadalismy jakos¢ predycji przez ten

model generowanej (MSE) na danych Boston Housing. W tym rozdziale natomiast utworzymy prosta siec
neuronowa i pokazemy sposdb, w jaki generuje ona swoje predykcje. Porownamy réwniez sposoby uczenia sie
(uaktualniania parametréw) obu modeli. Na koniec poréwnamy jakos¢ generowania predykgcji dla danych, ktore
nie byty wykorzystywane podczas treningu.

4.1. Charakterystyka modeli i obliczanie funkgji straty

Na poczatek przeprowadzmy poréwnanie obu modeli. Zobaczmy jak oba modele sa zbudowane, jak generuja
swoje predykcje oraz jak obliczana jest funkcja straty MSE w obu przypadkach.

4.1.1. Wieloraka regresja liniowa
4.1.1.1. Model

Na rysunku 4.1. przedstawiono schemat modelu wielorakiej regresji liniowej, ktéry zbudowalismy w poprzednim

rozdziale.

Rysunek 4.1. Schemat modelu wielorakiej regresji liniowej
Powyzszy diagram przedstawia pojedyncze réwnanie liniowe. Widzimy na nim:

® zmienne WejSCIOWe: Ti, T2, T3y . . . 5 T13

e parametry modelu (wagi): a1, @z, as, ..., Qs
e wyraz wolny (bias): b

* wyjscie: .

Proces generowania predykcji wyglada nastepujaco:
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U:=a1z1 +asxa + - - +aizzi3 +b

Podkreslmy, ze w odréznieniu od tego, co zobaczymy za chwile, model regres;ji liniowej charakteryzuje sie:

brakiem warstw ukrytych

brakiem funkgji aktywacji (a wtasciwie funkcja aktywadji liniowa o wzorze f(z) = z)
¢ wyjsciem bedacym jedynie kombinacja liniowa wejs¢
e mozliwoscig wyuczenia jedynie relacji liniowych

4.1.1.2. Obliczanie funkgji straty

Dowiedzielismy sie juz (z listingu 2.3), ze w przypadku wielorakiej regresji liniowej obliczanie MSE wyglada
nastepujaco:

float[,] predictions = X.MultiplyDot(A).Add(b);
float[,] errors = predictions.Subtract(Y);
float meanSquaredError = errors.Power(2).Mean();

Listing 4.1. Obliczanie MSE dla wielorakiej regresji liniowej

gdzie X to macierz cech wejsciowych, A to wektor wspotczynnikdw regresji, b to wyraz wolny, a Y to wektor
wartosci docelowych.

Matematycznie zapisalibysmy to jako:

‘A+b

~Y

n, (4.1)
E-

(3

MS

H &
I
S|= "X

]

gdzie P to macierz predykgji, E to macierz btedow (réznic) miedzy rzeczywistymi wartosciami docelowymi Y a
przewidywaniami regresji P, a n to liczba probek.

4.1.2. Sie¢ neuronowa

Poréwnajmy to teraz z siecig neuronowa.

4.1.2.1. Model

Na rysunku 4.2. przedstawiono schemat prostej sieci neuronowej z jednag warstwa ukryta.
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Rysunek 4.2. Schemat prostej sieci neuronowej z jedng warstwg ukrytg
Powyzszy model sktada sie z:

e warstwy wejsciowej (takiej samej jak w regresji: L1, T2, T3, ..., T13)
e warstwy ukrytej (pierwszej, z czterema neuronami o wyjsciach 01, 0, 03, 04)
e warstwy wyjsciowej (drugiej, z jednym neuronem o wyjsciu ¥ - analogicznie do modelu regres;ji liniowej)

Na rysunku zaznaczono réwniez parametry modelu:

e wagi wiliwi taczace warstwe wejsciowa z warstwa ukryta oraz warstwe ukryta z warstwa wyjsciowa
e biasy (wyrazy wolne) B i b dla warstwy ukrytej i wyjéciowej

4.1.2.2. Obliczanie funkg;ji straty

Zobaczmy teraz jak wyglada obliczanie MSE w przypadku naszej sieci neuronowej. Oto odpowiedni fragment
kodu:

/*
W1l - weights for the first layer [ inputSize (no of columns/attributes of X) x hiddenSize ]
W2 - weights for the second layer [ hiddenSize x 1 ]
Bl - bias for the first layer (for every neuron in the first layer)
b2 - bias for the second layer (there is only one neuron in the second layer)
M1 - input multiplied by W1
N1 - input multiplied by W1 plus Bl
01 - result of the activation function applied to (input multiplied by W1 plus B1)
M2 - result of 01 (result of the activation function from the first layer) multiplied by W2
predictions - (M2 + b2)
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errors - subtract predictions from Y
meanSquaredError - MSE, mean of errors squared

*/

// The first layer (hidden)

float[,] M1 = X.MultiplyDot(W1);

float[,] N1 = M1.AddRow(B1);

// Apply sigmoid activation function, so we can get 01 - outputs of the first layer
float[,] 01 = N1.Sigmoid();

// The second layer (output)
float[,] M2 = 01.MultiplyDot(W2);
float[,] predictions = M2.Add(b2);

// Calculate errors for all samples: errors = predictions - Y
float[,] errors = predictions.Subtract(Y);

float meanSquaredError = errors.Power(2).Mean();

Listing 4.2. Obliczanie MSE dla prostej sieci neuronowej
gdzie:

e X to macierz cech wejsciowych,

e W1 to macierz wag pierwszej warstwy (ukrytej),

e M1 to macierz wynikdw mnozenia wejs¢ X przez wagi pierwszej warstwy Wi,

e B1 to wektor biasow pierwszej warstwy,

e N1 to macierz wynikédw dodania biasow B1 do M1,

e 01 to macierz wyjs¢ pierwszej warstwy po zastosowaniu funkcji aktywacji sigmoid,

e W2 to macierz wag drugiej warstwy (wyjsciowej),

e M2 to macierz wynikbw mnozenia wyjs¢ pierwszej warstwy 01 przez wagi drugiej warstwy,
e b2 to wyraz wolny drugiej warstwy,

e Y to macierz wartosci docelowych,

e predictions to macierz przewidywanych wartosci wyjsciowych,

e errors to macierz btedéw (réznic) miedzy rzeczywistymi wartosciami docelowymi Y a przewidywaniami sieci

predictions.

(0 NOTE

Peten kod omawiany w tym rozdziale znajduje sie na GitHub.

Fragmenty kody, ktére zostaty przeniesione do Delphi Object Pascala znajduja sie tu.

W matematycznym zapisie wyglada to nastepujaco:
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MU = x.wil
N = pi 4 gl

ol — O'(N[l])

ME =0, - wk s
P:M[2]+b[2] ( ) )
E=P-Y

MSE= Y E}
i=1

gdzie:

e o to funkcja aktywacji sigmoid,

e P to macierz predykdji sieci,

¢ FE to macierz btedéw miedzy przewidywaniami sieci P a rzeczywistymi wartosciami docelowymiY’,

e pozostate symbole sg analogiczne do tych uzywanych w listingu 4.2, np. W 6znacza macierz wag pierwszej
warstwy, a O to macierz wyjs¢ pierwszej warstwy.

4.1.2.2.1. Funkcja aktywacji

Funkcja aktywacji jest to matematyczna funkcja stosowana w neuronach sieci neuronowej, ktéra wprowadza
nieliniowo$¢ do modelu. W naszym przypadku uzywamy funkgcji sigmoid, ktéra jest zdefiniowana wzorem:

1

@)= T e

Caty proces przebiega nastepujaco:

e Najpierw obliczamy wazong sume wejs¢ dla kazdego neuronu w warstwie ukrytej (mnozenie macierzy X przez
W1 i dodanie biaséw B1).

¢ Nastepnie stosujemy funkcje aktywacji sigmoid do tych sum, aby uzyskac wyjscia warstwy ukrytej o1.

e W nastepnej kolejnosci obliczamy wazong sume wyjs¢ z warstwy ukrytej dla neuronu wyjsciowego (mnozenie
01 przez W2 i dodanie biasu b2).

¢ Na koncu obliczamy btedy i MSE tak samo jak w przypadku regres;ji liniowe;.

Tak wyglada obliczanie predykgji i funkcji straty MSE w naszej prostej sieci neuronowej.

4.2. Spadek gradientowy

Zajmijmy sie teraz "droga powrotnga", czyli aktualizacjg wag i wyrazoéw wolnych (biaséw) w procesie uczenia sie
obu modeli.

4.2.1. Wieloraka regresja liniowa

Jak wiemy z poprzednich rozdziatéw, obliczanie gradientow dla wielorakiej regres;ji liniowej wyglada nastepujaco:

0 msE= EXT(P ~Y)
%A " (4.3)
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gdzie réznica P — Y to macierz btedow.

Programistycznie przektada sie to na ponizszy kod:

float[,] deltaA = X.Transpose().MultiplyDot(errors).Multiply(2.0f / n);
float deltaB = 2.0f / n * errors.Sum();

A = A.Subtract(deltaA.Multiply(LearningRate));

b -= LearningRate * deltaB;

Listing 4.3. Aktualizacja wspdtczynnikow regresji liniowej za pomocg metody spadku gradientowego
gdzie deltaA i deltaB to gradienty funkgji straty wzgledem wspétczynnikdw A i wyrazu wolnego b.
4.2.2. SieC nheuronowa

A jak to wyglada w sieci neuronowej?

Aktualizacja wag i biaséw w sieci neuronowej podczas treningu odbywa sie - podobnie jak w przypadku regresji
liniowej - z wykorzystaniem metody spadku gradientowego.

4.2.2.1. Reguta tancuchowa

W przypadku sieci wielowarstwowych obliczanie gradientéw zwigzane jest z obliczeniami pochodnych funkgji
ztozonych. Jezeli jakas wartos$¢ wejsciowa po przejsciu przez dwie warstwy sieci (f i g) przyjmuje wartos¢:

P = f(g9(X)) (4.4)
to pochodna P’, obliczana za pomoca reguty tancuchowej, wyniesie:
P'= f'(9(X)) - ¢'(X) (4.5)
Regute te mozna réwniez zapisa¢ w inny sposob:
2.

4.2.2.2. Obliczanie gradientow

Sprobujmy teraz przeprowadzi¢ wyliczenia wszystkich gradientéw wykorzystywanych w procesie aktualizacji wag i
biasow naszej sieci neuronowej. Aktualizacje te bedg odbywac sie wg ponizszych wzoréw (analog do wzoréw
(1.9) i (1.12) z rozdziatu o regresji liniowej):

whil .= wil _p. o MSE
ow 1]
whi.— wh _pp. o MSE
ow Pl (4.7)
B .— il _ .. o MSE
OBl
b2 .= pl . o MSE
b2l
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S . . , . . .8 9 9
Jak wida¢, musimy obliczy¢ cztery pochodne. Trzy z nich sa macierzami: -2 MSE, =2 MSE, 52 MSE, a

: ._0
czwarta jest skalarem: 57 MISE.

W celu obliczenia tych pochodnych skorzystamy z ponizszych wzoréw.

4.2.2.2.1. Warstwa wyjsciowa

Pochodna funkgji straty MSE wzgledem predykgji P jest identyczna, jak w przypadku regres;ji liniowej (wzory (4.1)
i (4.3)):

0 2
B_PMSE = ;(P -Y) (4.8)
Poniewaz P = M2 4 pl2 (wzory (4.2)), to
0
M P=J (4.9)

gdzie J to macierz jedynek® o wymiarach zgodnych z wymiarami macierzy M2

Kolejny wzor, z ktérego skorzystamy to wzor na pochodna funkgcji straty MSE wzgledem M@

0 0 0

Na tej samej podstawie, co wzér (4.8), mamy rowniez:

0
o L =

1 (4.11)

Poniewaz bl?! jest skalarem, a %MSEjest macierzg o wymiarach odpowiadajacych liczbie probek
treningowych, to w kolejnym wzorze musimy zastosowac agregacje, aby uzyska¢ gradient rowniez bedacy
skalarem. Agregacja ta jest w naszym przypadku sumowanie, poniewaz gradient %MSE = %(P —Y) (wzér
(4.8)) jest juz usredniony wzgledem liczby prébek. Zatem:

iMSE = sum (iMSE iP)

obl2l oP obl2
- 0 0
= —MSE .- ——P
i=1 (BP b )z
n_ /o (4.12)
= (_(Pz' -Y;) 1)
i=1 n
=257 -v)
n
i=1
Otrzymalismy wzor bardzo podobny do wzoru (4.3) dla regres;ji liniowej.
Kolejna pochodna, ktérg musimy wyliczy¢, to %MSE. Poniewaz M2 = olll . w2 (wzory (4.2)), to:
0
2] — olT
oW M (0] (4.13)
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Zatem, korzystajac z reguty tancuchowej, mamy:

0 0 0
= . 2]
S a MSE = oo MSE -~ M (4.14)
4.2.2.2.2. Warstwa ukryta
W przypadku warstwy ukrytej bedziemy korzysta¢ z ponizszych wzorow:
O sl _ plar
o0
9 msp=-9 msg. -2 _me
oonl oM 2 ool
3}
1 — 5/ (vl
SN 0 o (N™)
9 msE=-2 msp.—2 on
ON[1] ool ON
0
B N =g (4.15)
O _Nu_y
oM ]
9 msp=-2 msp.—2 _nm
oMl ON [ oM
O _pi_ xT
ow
9 msE=—2 msg. -2 _pmn
ow il oM ow il

gdzie J to macierz jedynek o odpowiednich wymiarach.

W przypadku pochodnej MSE wzgledem biasow warstwy ukrytej Bl ponownie musimy zastosowac agregacje,
tym razem w postaci sumowania wartosci z kazdej z kolumn z osobna, tak aby uzyskac¢ wektor gradientow o
wymiarach zgodnych z liczbg neurondéw w warstwie ukrytej.

Liczba kolumn w macierzy bedacej iloczynem

d il
o MSE - 5 N

jest réwna liczbie neuronéw w warstwie ukrytej, a liczba wierszy - liczbie prébek treningowych.

Zatem:
0 MSE = sumByColumn LM SE - o N
0Bl ON 1] oB
0
= sumByColumn (WMSE) (4.16)

n ) n 5 . 5

= m
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gdzie m to liczba neuronéw w warstwie ukrytej.

4.2.2.3. Implementacja w C#
Programistycznie przektada sie to na ponizszy kod (w komentarzach podano wymiary poszczegolnych macierzy):
// == The second layer (output) ==

// [nTrain, 1]
float[,] dLdP = errors.Multiply(2.0f / nTrain);

// [nTrain, 1]
float[,] dPdM2

M2.AsOnes();

// [nTrain, 1]
float[,] dLdM2

dLdP.MultiplyElementwise(dPdM2);

float dPdBias2 1;

// mean([nTrain, 1]) -> scalar
float dLdBias2 = dLdP.Multiply(dPdBias2).Sum();

// [HiddenLayerSize, nTrain]
float[,] dM2dW2 = O01.Transpose();

// [HiddenLayerSize, 1]
float[,] dLdW2 = dM2dW2.MultiplyDot(dLdP);

// == The first layer (hidden) ==

// [1, HiddenLayerSize]
float[,] dM2d01 = W2.Transpose();

// [nTrain, HiddenlLayerSize]
float[,] dLdO1l = dLdM2.MultiplyDot(dM2d01);

// [nTrain, HiddenlLayerSize]
float[,] dO1dN1 = N1.SigmoidDerivative();

// [nTrain, HiddenlLayerSize]
float[,] dLdN1 = dLdO1.MultiplyElementwise(dO1dN1);

// [HiddenLayerSize]
float[] dN1dBiasl = B1.AsOnes();

// [nTrain, HiddenLayerSize]
float[,] dN1dM1 = M1.AsOnes();

// [HiddenLayerSize]
float[] dLdBiasl = dN1dBiasl.MultiplyElementwise(dLdN1).SumByColumn();
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// [nTrain, HiddenLayerSize]
float[,] dLdM1 = dLdN1.MultiplyElementwise(dN1dM1);

// [inputFeatureCount, nTrain]
float[,] dM1dWl = XTrainT;

// [inputFeatureCount, HiddenLayerSize]
float[,] dLdWl = dM1dwl.MultiplyDot(dLdM1);

// Update parameters

W1l = W1l.Subtract(dLdWl.Multiply(LearningRate));
W2 = W2.Subtract(dLdW2.Multiply(LearningRate));

Bl = Bl.Subtract(dLdBiasl.Multiply(LearningRate));
b2 -= dLdBias2 * LearningRate;

Listing 4.4. Aktualizacja wag [ biasow sieci neuronowej za pomocg metody spadku gradientowego

gdzie:

e nTrain to liczba probek treningowych,
e HiddenLayerSize to liczba neuronéw w warstwie ukrytej,
e inputFeatureCount to liczba cech wejsciowych.

4.3. Jakosc predykgji

Na koniec poréwnajmy jakos¢ predykcji obu modeli na danych testowych czyli tych, ktére nie byty
wykorzystywane podczas treningu. W tym celu uruchomilismy oba modele na tych samych danych i obliczylismy
MSE.

4.3.1. Wieloraka regresja liniowa

Ponizej, jako przypomnienie z poprzedniego rozdziatu, przedstawiono efekt dziatania modelu wielorakiej regresji

liniowej na danych testowych:
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Iteration: 26000
Iteration: 28000
Iteration: 30000
Iteration: 32000 MSE: 19, 4ue664 al: -0,9491 a2: 1,3628
Iteration: 34000 MSE: 19, 44374 al: -0,9534 a2: 1,3698

| MSE: 19,46206 | |
I I I
I I I
I I I
I I I

Iteration: 36000 I MSE: 19,44154 I al: -0,9570 I a2:  1,3757
I I I
I I I
I I I
I I I
I I I

MSE: 19,45545
MSE: 19,45045

al: -0,9306
al: -0,9379
al: -0,94u0

a2: 1,3328
a2: 1,3u47
a2: 1,3545

22,4711
22,4762
22,1695
22,4688
22,1682
22,4677
22,1673
22,4669
22,1666
22,4663
22,1661
22,4658

Iteration: 38000 MSE: 19,43987 | al: -0,9601 al2: 1,3807
Iteration: 40000 MSE: 19,u43856 | al: -0,9628 a2: 1,3851
Iteration: 42000 MSE: 19,U43758 al: -0,9651 al2: 1,3888
Iteration: 44000 MSE: 19,U43682 al: -0,9671 a2: 1,3920
Iteration: 46000 MSE: 19,u43625 | al: -0,9688 al2: 1,3948
Iteration: 48000 MSE: 19,u43581 al: -0,9702 a2: 1,3972

[=pil=pile gl gl pile gl v i = il w il = gl = =

——— Training Complete (Matrices with Bias on Boston Data) —-
Learned parameters:
al -0,9702

a2 1,3972

a3 -0,3545

all 90,5873

a5 -2,0943

a6 1,97u6

a7 90,1827

a8 -3,0413

a9 2,7323
aloe -2,3118
all -1,8305
al2 90,4663
al3 -3,8503

b 22,1658

Sample predictions vs actual values:
Sample No Predicted Actual
1 17,5248 20,2000
i 17,6483 20,6000
3 21,4478 18,6000
150 25,8629 50,0000
151 14,5508 14,5000
152 34,3006 33,8000
MSE on test data: 29,649182
Elapsed time: ~@,65 seconds.
Rysunek 4.3. Wynik dziatania modelu wielorakiej regresji liniowej na danych testowych
Jak widzimy, model osiggnat MSE rowne 29,49182, przy obliczeniach trwajacych 0,65 sekundy.

W ostatniej iteracji uczenia (48000) MSE dla danych treningowych wynosito 19,43581.

4.3.2. Sie¢ neuronowa

W przypadku sieci neuronowej efekt dziatania na tych samych danych treningowych i testowych wyglada jak

ponizej:




Iteration: 48000 | MSE: 7,71858
——— Training Complete (Neural Network on Boston Data) ——-
Learned parameters:

Weights for the first layer (W1):

-0,6213
0,0684
0,6973
0,6386
09,8662
2,9202

-0,2565

1,1436
-0,2182
-0,0283

0,2698

0, 0644
-1,3172
Biases
B1[O]
B1[1]
B1[2]
B1[3]

-0, 8156
1,2166
90,2085
0,2052

-0,1327

-1, 2509

-1,0757

-0, 8656
90,2973

-1,1168

-0,5135
0,8340

-1,6076

14,6616
2, 1061
-1,2612
-5,2701

-0, 806U
-0,1887
0,03u5
-0, 4259
-1, 0024
1,1216
0,1375
-1, 0794
2,2307
-1, 0311
-0,1872
-0,1082
-1,2015

for the first layer (

0,0U26

0,8967
-0,7023
90,1168
-1,2038
-0, 4074
@, 7uu6
-2,1168
2,1693
-0,2028
-1,3896
-0,0994
~2,7930
Bl):

Weights for the second layer (W2):
11,0283
10,0692

9,9197
11,2849
Bias for the second layer (b2): 9

,3614

Sample predictions vs actual values:

Sample No

1
2
3
150
151
152

Predicted

19,7906
21,1270
16,6064
27,4527
14,7714
34, 3744

MSE on test data: 17,43655
Elapsed time: ~3,75 seconds.

Actual

20,2000
20,6000
18,6000
50,0000
14,5000
33,8000

Rysunek 4.4. Wynik dziatania modelu sieci neuronowej na danych testowych




Mozemy odczytac¢ nastepujace informacje:

e MSE na danych testowych wynidst 17,43655
e MSE dla ostatniej iteracji na danych treningowych wyniost 7,71858
e czas obliczen to 3,75 sekundy.

Oprocz tego mamy réwniez wyswietlone wagi obliczone dla wartwy ukrytej (W1) i wyjsciowej (W2) oraz biasy dla
obu warstw (B1 i b2).

Podsumowujac, sie¢ neuronowa osiagneta lepsza jakos¢ predykgji (nizsze MSE) na danych testowych w
poréwnaniu do modelu wielorakiej regres;ji liniowej. Jednakze czas obliczen byt diuzszy ze wzgledu na bardziej
ztozona strukture modelu i dodatkowe operacje zwigzane z funkcjg aktywacji i propagacja wsteczng (oraz
potwornie niezoptymalizowany kod & ).

Zauwazmy tez, ze w obu modelach wystepuje spora réznica pomiedzy MSE obliczanym na danych treningowych
wzgledem danych testowych.

4.4. Uproszczenie obliczen

Na listingu 4.4 staraliSmy sie przedstawi¢ kod, ktory jest jak najbardziej zblizony do wzoréw matematycznych, na
ktorych zostat oparty. Wiele obliczen mozna jednak uprosci¢, otrzymujac nastepujacy fragment kodu:

// The second layer (output)

float[,] dLdP = errors.Multiply(twoOverN);

float dLdBias2 = dLdP.Sum();

float[,] dLdW2 = O1.Transpose().MultiplyDot(dLdP);

// The first layer (hidden)

float[,] dLdO1 = dLdP.MultiplyDot(W2.Transpose());

float[,] dLdAN1 = dLdO1.MultiplyElementwise(N1.SigmoidDerivative());
float[] dLdBiasl = dLdN1.SumByColumn();

float[,] dLdWl = XTrainT.MultiplyDot(dLdN1);

z wyprowadzong poza petle uczaca zmienna:

float twoOverN = 2.0f / nTrain;

Listing 4.5. Uproszczony kod obliczania gradientéw sieci neuronowej

Efekt dziatania powyzszej procedury przedstawiono na ponizszym rysunku.
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46000 | MSE:
48000 | MSE:

Iteration:
Iteration:

7,77237
7,71858

——— Training Complete (Simplified Neural Network on Boston Data) ——-
Learned parameters:

Weights for the first layer (W1):

-0,6213
0,0684
0,6973
©,6386
0,8662
2,9202

-0,2565
1,1436

-0,2182

-0,0283
0,2698
0, 0644

-1,3172

Biases

B1[0]

B1[1]

B1[2]

B1[3]

-0, 8U56
1,2166
0,2085
0,2052

-9,1327

-1,2509

-1,0757

-0, 8656
0,2973

-1,1168

-0,5135
0,83u0

-1,6076

-14,6616
2, 14061
-1,2612
-5,2701

-0, 806U
-0,1887
0,03u5
-9, 4259
-1, 0424
1,1216
0,1375
-1,0794
2,2307
-1,0311
-0,1872
-9,1082
-1,2015

for the first layer

0,0u26
0,8967
-0,7023
0,1168
-1,2038
-0, 4074
0, 74U6
-2,1168
2,1693
-9,2428
-1,3896
-9, 0994
-2,7930

(B1):

Weights for the second layer (W2):

11,0283
10,0692

9,9197
11,2849

Bias for the second layer (b2): 9

/3614

Sample predictions vs actual values:

Sample No Predicted
1 19,7906
2 21,1270
3 16,6064
150 27,u4527
151 14,7714
152 34,37u4

MSE on test data: 17,43655
Elapsed time: ~2,80 seconds.

Actual

20,2000
20,6000
18,6000
50,0000
14,5000
33,8000

Rysunek 4.5. Wynik dziatania uproszczonego modelu sieci neuronowej na danych testowych
Wszystkie wyliczone parametry pozostaty bez zmian, natomiast czas obliczen skrécit sie z 3,75 do 2,8 sekundy.
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4.5. Podsumowanie

W tym rozdziale utworzyliSmy prostg sie¢ neuronowa z jedng warstwa ukryta i porownalismy ja z modelem
wielorakiej regresji liniowej. Omowilismy sposdb generowania predykcji przez oba modele oraz obliczania funkgji
straty MSE. Przeanalizowalismy rowniez proces aktualizacji wag i biasow w obu modelach za pomoca metody
spadku gradientowego, wykorzystujac regute tancuchowa do obliczenia niezbednych pochodnych w przypadku
sieci neuronowej. Na koniec poréwnalismy jakos¢ predykcji obu modeli na danych testowych, zauwazajac, ze sie¢
neuronowa osiggneta lepsze wyniki kosztem dtuzszego czasu obliczen. Przedstawilismy takze uproszczony kod
obliczania gradientéw dla sieci neuronowej, ktéry poprawit wydajnos¢ bez zmiany wynikéw.

W nastepnym rozdziale sprébujemy opakowac poznane elementy w biblioteke C# NeuralNetworks i sprawdzi¢ w
jaki sposéb za jej pomoca mozna zbudowad i wytrenowac sie¢ w oparciu o dane Boston Housing.

Created: 2025-11-15

Last modified: 2025-12-22

Title: 4. Pierwsza sie¢ neuronowa

Tags: [C#] [Sieci neuronowe] [Regresja liniowa] [Macierze]
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5. Biblioteka NeuralNetworks

Kazdorazowe implementowanie sieci neuronowej od podstaw, tak jak to zostato przedstawione na
listingach 4.2 i 4.5 w poprzednim rozdziale, bytoby niepraktyczne. Dlatego tez w kolejnych rozdziatach
bedziemy postugiwac sie specjalizowang biblioteka (o nazwie NeuralNetworks), stuzaca do definiowania i
trenowania modeli sieci neuronowych oraz do przeprowadzania procesu wnioskowania (inferencji) z
uzyciem tych modeli.

(0 NOTE
Kod zrédtowy omawianej biblioteki znajduje sie na GitHub . Dostepna jest rowniez jej

dokumentacja.

Ponadto, projekt NeuralNetworksExamples® zawiera przyktadowe procedury wykorzystujace te
biblioteke.

A pod koniec tego rozdziatu ponownie sprobujemy rozwigzac problem przewidywania cen doméw w
zbiorze Boston Housing, tym razem korzystajac z omawianej biblioteki.

5.1. Struktura biblioteki

Biblioteka NeuralNetworks sktada sie z trzech czesci. S3 to:

1. cze$¢ ogoblna, zawierajgca elementy wspdlne dla catej biblioteki (NeuralNetworks.Core),

2. czes¢ zwigzana z definicjg architektury modelu sieci neuronowej (NeuralNetworks.Models, Neural
Networks.Layers, NeuralNetworks.Operations, NeuralNetworks.Losses),

3. czes¢ zwigzana z trenowaniem modelu (NeuralNetworks.Trainers, NeuralNetworks.Optimizers,
NeuralNetworks.DataSources, NeuralNetworks.LearningRates, NeuralNetworks.Paramlnitializers).

Kazda z tych czesci oméwimy w kolejnych podpunktach.

5.2. Czesc ogdlna
5.2.1. ArrayExtensions

Jednym z podstawowych elementéw biblioteki jest klasa statyczna ArrayExtensions, implementujaca
przydatne - w kontekscie naszej biblioteki - operacje na macierzach. Operacje te mozna podzieli¢ na
nastepujace grupy:

1. tworzenie i inicjalizacja macierzy (np. AsZeros, AsZeroOnes, RandomInPlace),
2. operacje arytmetyczne na macierzach (np. Add, AddInPlace, Multiply, MultiplyDot, Multiply
Elementwise),

3. agregacje i statystyki (np. Sum, Mean, ArgMax, StdDev),
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4. selekcja danych i manipulacja macierzami (np. GetRow, SetRow, Transpose),

5. normalizacja danych (np. Standardize)

6. funkcje mogace petnic role funkgji aktywacji (np. Sigmoid, Tanh, Softmax (nie jest to "typowa"
funkcja aktywacji, poniewaz dziata na catym wektorze jednoczesnie)),

7. permutacja i operacje pomocnicze (np. CliplnPlace, PermutelnPlace).

5.2.2. OperationBackend

OperationBackend jest to klasa statyczna, ktora petni role rozdzielnika pomiedzy konkretnymi
implementacjami interfejsu |IOperations. W ten sposéb mozemy wybiera¢ konkretng implementacje,

ktora bedzie wykorzystywana przez biblioteke NeuralNetworks do wykonywania operacji numerycznych
podczas trenowania lub uruchamiania danego modelu sieci neuronowe;.

Interfejs 10perations definiuje zestaw operacji macierzowych niezbednych do dziatania sieci, takich jak
mnozenie macierzy, dodawanie biaséw, funkcje aktywacji, operacje konwolucyjne, itp. R6zne
implementacje tego interfejsu moga by¢ zoptymalizowane pod katem réznych scenariuszy uzycia, takich
jak wydajnos¢ na CPU, wykorzystanie GPU, czy minimalizacja zuzycia pamieci.

Obecnie zaimplentowane s3 (czesciwo lub w catosci) nastepujace zestawy operacji:

e OperationsArray - podstawowa, "naiwna" implementacja, stuzaca do eksperymentow/debugowania,
oparta gtéwnie o dziatania na tablicach float[], float[,] oraz float[,,,],

e OperationsSpan - implementacja wykorzystujaca struktury Span® i ReadOnlySpan® do
wykonywania operacji macierzowych, oferujaca lepsza wydajnosc niz operationsArray,

e OperationsSpanParallel - implementacja oparta o Span<T> i ReadOnlySpan<T>, wykorzystujaca
przetwarzanie rownolegte (metoda Parallel.For®) do dalszego przyspieszenia obliczen,

e OperationsGpu - implementacja wykorzystujaca biblioteke ILGPU (kod zrodtowy ') do
wykonywania operacji macierzowych na karcie graficznej (GPU).

Kazda z powyzszych klas dziedziczy po poprzedniej (z wyjatkiem OperationsArray), umozliwiajac
wykonywanie operacji domysinych w razie braku implementacji danej operacji w konkretnej klasie.

Z naszych eksperymentow wynika, ze o ile klasa OperationsSpanParallel oferuje zazwyczaj catkiem
przyzwoitg wydajnos¢ w poréwnaniu z klasami "wolniejszymi”, o tyle klasa OperationsGpu moze
przyspieszy¢, ale moze tez spowolni¢ obliczenia w stosunku do OperationsSpanParallel w zaleznosci od
konkretnego scenariusza uzycia i rozmiaru danych, niezaleznie od posiadanej karty graficznej. Dlatego
zalecamy przeprowadzanie wtasnych testow wydajnosciowych w kontekscie konkretnego zastosowania.

Ustawienie odpowiedniego typu backendu odbywa sie poprzez wywotanie metody statycznej
Use(OperationBackendType), gdzie OperationBackendType to typ klasy implementujacej interfejs
IOperations, np.:
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OperationBackend.Use(OperationBackendType.CpuSpansParallel);

(0 NOTE

W bibliotece NeuralNetworks zrezygnowaliSmy z wykorzystania zewnetrznych pakietow do obstugi
macierzy (jak np. Math.NET Numerics?), poniewaz chcielismy zachowac petng kontrole nad jej

implementacjg oraz utrzymac wartos¢ edukacyjna catego projektu. Nie znaczy to, ze w przysztosci
nie zostang dodane implementacje oparte na takich bibliotekach, np operationsMathnet.

5.3. Definicja architektury modelu sieci neuronowej
5.3.1. Klasy opisujace model

Podstawowym elementem biblioteki jest abstrakcyjna klasa Model <TInputData, TPrediction>, ktora

reprezentuje sie¢ neuronowa. Klasa ta posiada metody stuzace do definiowania warstw i ustawiania

funkgji straty, do dokonywania predykcji oraz metody wywotywane przez trenera Trainer<TInputData,

TPrediction> w trakcie procesu uczenia.

public abstract class Model<TInputData, TPrediction>
where TInputData : notnull
where TPrediction : notnull

private LayerList<TInputData, TPrediction> _layers;
private float _lastloss;

protected Model(LayerListBuilder<TInputData, TPrediction>? layerlListBuilder,
Loss<TPrediction> lossFunction)

{

LossFunction = lossFunction;
_layers = layerListBuilder.Build();

public IReadOnlylList<lLayer> Layers => _layers;
public Loss<TPrediction> LossFunction { get; }

public TPrediction Forward(TInputData input, bool inference)
=> _layers.Forward(input, inference);

public void Backward(TPrediction lossGrad)
=> _layers.Backward(lossGrad);

public float TrainBatch(TInputData xBatch, TPrediction yBatch)

65 /96


https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/

TPrediction predictions = Forward(xBatch, false);
_lastlLoss = LossFunction.Forward(predictions, yBatch);
Backward(LossFunction.Backward());

return _lastlLoss;

public void UpdateParams(Optimizer optimizer)
=> _layers.UpdateParams(optimizer);

public int GetParamCount()
=> layers.Sum(l => (int?)1l.GetParamCount()) ?? ©;

Listing 5.1. Szkic klasy Model<TInputData, TPrediction>

Klasami pochodnymi sg BaseModel<TInputData, TPrediction>, przeznaczona do pokrycia przez
konkretng implementacje, oraz klasa GenericModel<TInputData, TPrediction>, przeznaczona do

bezposredniego uzycia.

Klasy modelu umieszczone zostaty w przestrzeni nazw NeuralNetworks.Models. Ich hierarchia zostata

przedstawiona na ponizszym diagramie klas.

" Model<TinputData, TPrediction= A ‘ LayerList<Tin, TOut> ¥
Generic Abstract Class Generic Class
r ‘ b List<Layer>

4 Properties

ﬂ’ Layers
ﬂ’ LossFunction

4 Methods

Backward i"'].aywi.i:tBuiln‘e! v
CreatelayerlistBuilderinternal ; Abstract Class J
Forward i
GetParamCount
TrainBatch
UpdateParams

AREELE

)

| LayerListBuilder<Tin, TOut> ¥
Generic Class
= LayerListBuilder

( GenericModel<TInputData, TPrediction> ¥ BaseModel=TinputData, TPrediction= ¥
Generic Class : Generic Abstract Class
- Model<TinputData, TPrediction> , = Model <TinputData, TPrediction>
H

Rysunek 5.1. Diagram klas modelu sieci neuronowej

Przyktad uzycia tych klas przedstawiono w rozdziale 5.5.1.
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5.3.2. Warstwy

Biblioteka zawiera szereg gotowych warstw sieci neuronowych, zdefiniowanych jako klasy dziedziczace

po abstrakcyjnej klasie Layer<TIn, TOut>.

public abstract class Layer<TIn, TOut> : Layer
where TIn : notnull
where TOut : notnull

private TOut? output;
private TIn? _input;

private OperationList<TIn, TOut>? _operations;
protected TIn? Input => _input;

public TOut Forward(TIn input, bool inference)

{
bool firstPass = _input is null;
_input = input;
if (firstPass)
{
// First pass, set up the layer.
SetupLayer();
}
_output = _operations.Forward(input, inference);
return _output;
}
public TIn Backward(TOut outputGradient)
{
TIn inputGradient = _operations.Backward(outputGradient);
return inputGradient;
}

public override void UpdateParams(Optimizer optimizer)
=> _operations.UpdateParams(this, optimizer);

protected virtual void SetuplLayer()

{
// Build the operation list

_operations = CreateOperationListBuilder().Build();
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public override int GetParamCount()
=> operations.GetParamCount();

Listing 5.2. Szkic abstrakcyjnej klasy Layer<TIn, Tout>

Klasy opisujace warstwy znajduja sie w przestrzeni nazw NeuralNetworks.Layers i obejmujg miedzy

innymi:

e warstwy geste (ang. dense, fully connected) - DenselLayer,
e warstwy konwolucyjne - Conv2DLayer,
e warstwy sptaszczajace - FlattenLayer.

Ponizej przedstawiono diagram klas zwigzanych z definiowaniem warstw sieci neuronowe;j.

Layer A
Abstract Class
4 Methods
) Backward
@ Forward
) GetinputType
@ GetQuiputType
@ GetParamCount
) UpdateParams
F 3
i Layer=Tin, TOut= ¥ ( OperationList<TIn, TOut> ¥ ' OperationlistBuilder ¥
| Generic Abstract Class Generic Class | Abstract Class
i = Layer ‘ = List<Operation=> i\
L r 3
'y
( OperationListBuilder<TIn, TOut> ¥
Generic Class
[P S ) P S = OperationListBuilder
DenseLayer L4 Conv2DLayer L4 FlattenLayer L
Class Class Class
 Layer<float[], float[]> =+ Layer<floatl, ], floatl,.]> = Layer<floatL, ], float]=

Rysunek 5.2. Diagram klas warstw

5.3.3. Operacje

Definicja kazdej warstwy obejmuje liste operacji (w tym funkcje aktywacji oraz dropout). Klasy
implementujgce operacje umieszczone sg w przestrzeni nazw NeuralNetworks.Operations.

Warstwa stanowi logiczny etap przetwarzania danych, natomiast operacje sg elementarnymi krokami

wykonywanymi wewnatrz warstwy.

Przyktadowe operacje to:
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zastosowanie wag i biasow - WeightMultiply, BiasAdd,

([ ]

o funkcje aktywacji - Sigmoid, ReLU2D,
e dropout - Dropout2D,

e konwolugja - Conv2D,

e operacje sptaszczajace - Flatten.

Ponizej przedstawiony jest diagram klas zwigzanych z definiowaniem operacji.

{ Operation A
Abstract Class
4 Fields | Operation<TIn, TOut- ¥
5 " | Generic Abstract Class
&g _registered | % operation
4 Methods L
'y
(¥) Backward
) Forward
@ GetinputType
) GetOutputType
[F) SetRegistered
[ —
Operation2D | OperationdD ¥
Abstract Class | Abstract Class
= Operation<floatf], flo... ; = Operation<float[,], fl...
i I
[ ParamOperation2D ¥ [ Dropout2D ¥ [ ActivationFunction2D ¥ [ ParamOperationdD ¥ [ DropoutaD ¥ [ ActivationFunctiondD ¥
| Abstract Class Class | Abstract Class Abstract Class Class | Abstract Class
i -+ Operation2D - OperationzD , = Operation2D =+ OperationdD -+ OperationdD ; -+ OperationdD
: i {
A

{ ParamOperationd.
Generic Abstract Class
=¥ ParamOperationdD

ParamOperation2D<TParam = A s
Generic Abstract Class =
-+ ParamOperationz2D

4 Properties ( Conv2D v
f", Param Class
f: ParamGradient = ParamOperationdD-<fl...
4 Methods N ———
() Backward
@ CalcParamGradient
Yy
[ WeightMultiply A [ BiasAdd A
Class Class
= ParamOperation2D «float]]» = ParamOperation2D«float[]»
-
4 Methods 4 Methods
&) CalcinputGradient 73 CalcinputGradient
&3 CalcOutput 3 CalcOutput
(¥ CalcParamGradient &} CalcParamGradient
[¥] GetParamCount [¥) GetParamCount
@ UpdateParams (@) UpdateParams

Rysunek 5.3. Diagram klas operacji
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Ponizej przedstawiono kod przyktadowej operacji - WeightMultiply - w wersji pogladowej, bez uzycia
backendu.

public class WeightMultiply(float[,] weights) : ParamOperation2D<float[, ]>(weights)

{
protected override float[,] CalcOutput(bool inference)

=> Input.MultiplyDot(Param);

protected override float[,] CalcInputGradient(float[,] outputGradient)
=> outputGradient.MultiplyDot(Param.Transpose());

protected override float[,] CalcParamGradient(float[,] outputGradient)
=> Input.Transpose().MultiplyDot (outputGradient);

public override void UpdateParams(Layer? layer, Optimizer optimizer)
=> optimizer.Update(layer, Param, ParamGradient);

public override int GetParamCount()
=> Param.Length;

Listing 5.3a. Klasa weightMultiply - wersja bez uzycia backendu

Rzeczywista implementacja tej klasy jest mnigj interesujaca i wyglada nastepujaco:

using static NeuralNetworks.Core.Operations.OperationBackend;

public class WeightMultiply(float[,] weights) : ParamOperation2D<float[,]>(weights)
{

protected override float[,] CalcOutput(bool inference)
=> WeightMultiplyOutput(Input, Param);

protected override float[,] CalcInputGradient(float[,] outputGradient)
=> WeightMultiplyInputGradient(outputGradient, Param);

protected override float[,] CalcParamGradient(float[,] outputGradient)
=> WeightMultiplyParamGradient(Input, outputGradient);

public override void UpdateParams(Layer? layer, Optimizer optimizer)
=> optimizer.Update(layer, Param, ParamGradient);

protected override void EnsureSameShapeForParam(float[,]? param, float[,] paramGradient)
=> EnsureSameShape(param, paramGradient);

public override int GetParamCount()
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=> Param.Length;

Listing 5.3b. Klasa weightMultiply - wersja z uzyciem backendu

5.3.3.1. Funkcje aktywac;ji

Czesc z wyzej omowionych operagji to funkcje aktywacji. W bibliotece zdefiniowano m.in. nastepujace,
podstawowe funkcje aktywacji.

Ponizej przedstawiony zostat diagram klas zwigzanych z definicjami funkcji aktywacji.
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| Linear ¥

Class
=+ ActivationFunction2D

Rysunek 5.4. Diagram klas funkcji aktywacji

5.3.3.1.1. RelLU

Definicja matematyczna w klasycznym wydaniu to:

_Jz jesliz >0
fe) = {0 jediz <0 (5.1)

albo inaczej:
f(z) = max(0, z) (5.2)

My jednak zastosowalismy nieco zmodyfikowana wersje, w ktérej wynik jest skalowany przez
wspotczynnik beta:

_Jz-B jesliz >0
flw) = {O jesliz < 0 (53)

Kod w C# w bibliotece NeuralNetworks:

public static float[,] ReLU(this float[,] source, float beta = 1f)
{

int rows = source.GetLength(0);

int columns = source.GetLength(1);
float[,] res = new float[rows, columns];
for (int i = @; i < rows; i++)

{

for (int j = @; j < columns; j++)

{

float value = source[i, j];
res[i, j] = value >= @ ? value * beta : 0;

}

return res;

Listing 5.4. Implementacja funkcji ReLU w bibliotece NeuralNetworks

5.3.3.1.2. Leaky RelLU
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Tu réwniez nieco oddalilismy sie od standardu. Definicja matematyczna naszej "autorskiej" wersji Leaky
RelLU to:

x-B jesliz>0
z-a jesliz<0

o) ={ (5.4

Umozliwi to nam szalone eksperymenty z roznymi skalami tej funkcji aktywacji.

Kod w C# w bibliotece NeuralNetworks:

public static float[,] LeakyReLU(this float[,] source, float alpha = 0.01f, float beta = 1f)
{

int rows = source.GetlLength(®0);

int columns = source.GetLength(1);

float[,] res = new float[rows, columns];

for (int i = ©; i < rows; i++)

{
for (int j = @; j < columns; j++)
{
float value = source[i, j];
res[i, j] = value >= @ ? value * beta : value * alpha;
}
}

return res;

Listing 5.5. Implementacja funkgji Leaky ReLU w bibliotece NeuralNetworks

5.3.3.1.3. Sigmoid

Definicja matematyczna:
(5.5)
Kod w C# w bibliotece NeuralNetworks:

public static float[,] Sigmoid(this float[,] source)
{

int rows = source.GetLength(0);
int columns = source.GetlLength(1);
float[,] res = new float[rows, columns];

for (int 1 = @; i < rows; i++)

{

for (int j = @; j < columns; j++)
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res[i, j] =1 / (1 + MathF.Exp(-source[i, j1));

return res;

Listing 5.6. Implementacja funkcji Sigmoid w bibliotece NeuralNetworks

5.3.3.1.4. Tanh

Definicja matematyczna:
f(z) = tanh(z) (5.6)

Kod w C# w bibliotece NeuralNetworks:

public static float[,] Tanh(this float[,] source)
{

int rows = source.GetlLength(®0);
int columns = source.GetLength(1);
float[,] res = new float[rows, columns];

for (int i = @; i < rows; i++)
{
for (int j = @; j < columns; j++)

{
res[i, j] = MathF.Tanh(source[i, j]);

return res;

Listing 5.7. Implementacja funkcji Tanh w bibliotece NeuralNetworks

5.3.3.1.5. Wykresy i diagram klas funkgji aktywacji

Przebiegi zaimplementowanych, typowych funkgji aktywacji przedstawiono na ponizszym wykresie.
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Typowe funkcje aktywacji
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Rysunek 5.5. Wykresy funkcji aktywacji: ReLU, Leaky RelLU, Sigmoid, Tanh

5.3.4. Funkcje straty

Kompletna definicja modelu obejmuje réwniez (oprocz listy warstw) podanie wykorzystywanej funkgji
straty (loss function). Klasy implementujace funkcje straty znajduja sie w przestrzeni nazw Neural
Networks.Losses.

public abstract class Loss<TPrediction>

{

private TPrediction? _prediction;
private TPrediction? _target;

public TPrediction Prediction => _prediction;
protected internal TPrediction Target => _target;

public float Forward(TPrediction prediction, TPrediction target)

{
_prediction = prediction;
_target = target;
return CalculatelLoss();

}

public TPrediction Backward()
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TPrediction lossGradient = CalculatelossGradient();
return lossGradient;
protected abstract float CalculatelLoss();

protected abstract TPrediction CalculatelLossGradient();

Listing 5.8. Szkic abstrakcyjnej klasy Loss<TPrediction>

Przyktadowe funkcje straty zaimplementowane w naszej bibliotece i dziedziczace po Loss<TPrediction>
to:

e btad sredniokwadratowy (Mean Squared Error) - MeanSquaredError,

e entropia krzyzowa (Softmax Cross Entropy Loss) - SoftmaxCrossEntropyLoss,

e entropia krzyzowa z "log-sum-exp trick" (Softmax Log-Sum-Exp Cross Entropy Loss) - SoftmaxLog

SumExpCrossEntropyLoss.

| Loss<TPrediction- ¥
Generic Abstract Class

y 3
{ Loss2D ¥
| Abstract Class
| ¥ Loss<float[]>
|
x
( MeanSquaredError ¥ ( SoftmaxCrossEntropyLoss ¥ ( SoftmaxLogSumExpCrossEntropyLoss ¥
Class Class Class
b Loss2D = Loss2D b Loss2D

Rysunek 5.6. Diagram klas funkcji strat

Ponizej przedstawiono dwie popularne funkgcje straty.

5.3.4.1. MSE (Mean Squared Error)

O tej funkcji wspominalismy juz w poprzednich rozdziatach (wzory 1.8 i 4.2). Jest to jedna z najprostszych
i najczesciej stosowanych funkgji straty, zwtaszcza w regresji. Tytutem przypomnienia ponownie
przedstawiamy jej definicje.
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Definicja matematyczna:

E=P-Y
1 & (5.7)

MSE=—Y E?

S n;

Kod w C# w bibliotece NeuralNetworks:

protected override float Calculateloss()

{
int batchSize = Prediction.GetLength(9);
_errors = Prediction.Subtract(Target);
return _errors.Power(2).Sum() / batchSize;
}

Listing 5.9. Implementacja funkcji MSE w bibliotece NeuralNetworks

Wartosci zapisane w zmiennej _errors bedg pozniej wykorzystane do obliczenia gradientéw w metodzie

CalculatelLossGradient.

5.3.4.2. Softmax Cross-Entropy

Ta funkgja straty jest szczegdlnie odpowiednia dla zadan klasyfikacji wieloklasowej z pojedynczg etykieta.
taczy w sobie funkcje softmax, ktora przeksztatca wyjscia sieci w prawdopodobienstwa klas, oraz
entropie krzyzowa, ktora mierzy réznice miedzy przewidywanymi a rzeczywistymi etykietami klas.

Definicja matematyczna:

eFii
S; ; = Softmax(P;); = —5———

> g €50

. [ o (5.8)
SCE=—3 Y;-(~log(5:)) = —— ) Yilog(Sy)

gdzie:

e Y to rzeczywiste etykiety klas (w formie one-hot, czyli same zera za wyjatkiem jednego elementu
rownego 1 dla prawidtowej klasy),

e P to wyjscia sieci przed zastosowaniem funkgji softmax (tzw. [ogits),

e S to przewidywane prawdopodobienstwa klas po zastosowaniu funkgji softmax (zsumowane
wartosci wynosza 1 dla kazdej prébki),

e n to liczba prébek w batchu,

e cto liczba klas (w przypadku MNIST jest to 10 - jedna klasa dla kazdej cyfry),

e ¢ to indeks prébki w batchu (od 1 do n),
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e jto indeks klasy (od 1 do ¢).

W skrocie, podnosimy e do potegi predykgji sieci dla danej probki i kategorii, nastepnie dzielimy przez

sume tych wartosci dla wszystkich kategorii, aby uzyska¢ prawdopodobienstwa. Nastepnie

logarytmujemy te prawdopodobienstwa i mnozymy przez rzeczywiste etykiety klas (wartosci etykiet sg

rowne tylko O lub 1), usredniajac wyniki dla wszystkich probek.

Odpowiedni kod w bibliotece NeuralNetworks wyglada nastepujaco:

protected override float CalculatelLoss()

{
_softmaxPrediction = Prediction.Softmax();
float[,] clippedSoftmax = _softmaxPrediction.Clip(eps, 1 - eps);
return -clippedSoftmax.Log().MultiplyElementwise(Target).Mean();
}

Listing 5.70. Implementacja funkcji Softmax Cross-Entropy w bibliotece NeuralNetworks

Dwie uwagi. Po pierwsze, w implementacji funkgji straty stosujemy klipowanie wartosci softmax do

przedziatu otwartego (0, 1), aby unikna¢ probleméw z logarytmem zera. Po drugie, zapisujemy wartosci

softmax w polu _softmaxPrediction, poniewaz beda one potrzebne podczas obliczania gradientéw w

metodzie CalculatelLossGradient.

5.3.5. Inicjalizacja wag

Wagi i biasy w warstwach sieci neuronowej muszag by¢ odpowiednio zainicjalizowane przed

rozpoczeciem procesu trenowania. W bibliotece NeuralNetworks dostepne sa rézne strategie inicjalizacji

parametréw, zaimplementowane jako klasy dziedziczace po abstrakcyjnej klasie Paraminitializer.

Przyktadowy inicjalizator wag to Glorotlnitializer o nastepujacej implementacji:

public class GlorotInitializer(SeededRandom? random = null) : RandomInitializer(random)

{
internal override float[,] InitWeights(int inputColumns, int neurons)
{
float stdDev = MathF.Sqrt(2.0f / (inputColumns + neurons));
return CreateRandomNormal(inputColumns, neurons, Random, 0, stdDev);
}
internal override float[] InitBiases(int neurons)
=> new float[neurons];
}

public static float[,] CreateRandomNormal(int rows, int columns, Random random, float mean
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0, float stdDev = 1)
{

float[,] res
for (int row

new float[rows, columns];
Q; row < rows; row++)

{
for (int col = 0; col < columns; col++)
{
res[row, col] = BoxMuller() * stdDev + mean;
}
}

return res;

float BoxMuller()
{
// uniform(@,1] random doubles
// NextDouble returns [0,1), so to convert to (0,1], we use 1 - NextDouble()
// Zero must be excluded because log(®) is undefined.
double ul = 1 - random.NextDouble();
double u2 = 1 - random.NextDouble();

//random normal(0,1)
float randStdNormal = Convert.ToSingle(Math.Sqrt(-2.0 * Math.Log(ul)) * Math.Sin(2.0

* Math.PI * u2));
return randStdNormal;

Listing 5.11. Implementagja inicjalizatora Glorot w bibliotece NeuralNetworks

Matematycznie zapisaliby$Smy to za pomoca nastepujacych wzordéw:

(5.9)

gdzie

W, j to waga faczaca neuron i z warstwy poprzedniej z neuronem j w biezacej warstwie, b; to bias
neuronu 7, n;y, to liczba neuronow w warstwie poprzedniej, Tyt to liczba neurondw w biezacej warstwie.
Symbol N(0, 02) oznacza rozktad normalny o $redniej 0 i wariangji o2 (o to odchylenie standardowe).

5.3.6. Dropout
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Dropout to technika stosowana w sieciach neuronowych w celu zapobiegania przeuczeniu (overfitting).
Polega ona na losowym "wyfaczaniu" (ustawianiu na zero) pewnego odsetka neuronéw podczas
treningu, co zmusza sie¢ do nauki bardziej ogdlnych cech danych. W bibliotece NeuralNetworks dropout
zostat zaimplementowany jako operacja dziedziczaca Dropout2D.

Implementacja wyglada nastepujaco:

public class Dropout2D(float keepProb = 0.8f, SeededRandom? random = null) :
Operation2D, IParameterCountProvider

{
private float[,]? _mask;
protected override float[,] CalcOutput(bool inference)
{
if (inference)
{
return Input.Multiply(keepProb);
}
else
{
_mask = Input.AsZeroOnes(keepProb, random ?? new());
return Input.MultiplyElementwise(_mask);
}
}
protected override float[,] CalcInputGradient(float[,] outputGradient)
{
return outputGradient.MultiplyElementwise(_mask);
}
public int GetParamCount()
=> mask?.Length ?? 0;
}

Listing 5.12. Implementacja operacji Dropout2D w bibliotece NeuralNetworks

Zauwazmy, ze podczas inferencji (czyli predykcji) dropout nie jest stosowany - zamiast tego wyjscia sa
skalowane przez prawdopodobienstwo zachowania neuronu (keepProb), aby uwzglednic fakt, ze podczas
treningu czes¢ neuronow byta wytaczana. Gdybysmy nie skalowali wyjs¢ podczas inferencji, wartosci
wyjsciowe bytyby zawyzone w poréwnaniu do tych uzyskiwanych podczas treningu.

5.4. Trenowanie modelu
5.4.1. Trener

81/96



Do trenowania modelu stuzy klasa Trainer<TInputData, TPrediction>. Klasa ta przyjmuje jako parametry
typ danych wejsciowych i wyjsciowych oraz posiada metody stuzace do trenowania modelu na podstawie
dostarczonych danych treningowych. Przyktadowe uzycie trenera zaprezentowano w rozdziale 5.5.3.

Podstawowa metoda tej klasy jest metoda Fit, ktora realizuje proces trenowania modelu. Metoda ta
przyjmuje jako argumenty dostawce danych treningowych i testowych, liczbe epok, rozmiar batcha oraz
optymalizator.

Ponizej przedstawiono zasadniczg czes$¢ kodu trenera (metoda Fit):

(TInputData xTrain, TPrediction yTrain, TInputData? xTest, TPrediction? yTest)
= dataSource.GetData();

for (int epoch = 1; epoch <= epochs; epoch++)

{

PermuteData(xTrain, yTrain, random);
optimizer.UpdateLearningRate(epoch, epochs);

foreach ((TInputData xBatch, TPrediction yBatch) in GenerateBatches(xTrain,
yTrain, batchSize))

{

trainLoss = model.TrainBatch(xBatch, yBatch);
model.UpdateParams(optimizer);

Listing 5.13. Fragment kodu trenera

Implementacja metody TrainBatch, wywotywanej w powyzszym kodzie zostata przedstawiona na listingu
5.1.

5.4.2. Dostarczanie danych treningowych i testowych

Do zaopatrywania trenera w dane treningowe i testowe stuzy klasa DataSource<TInputData,

TPrediction>. Dla danych Boston Housing wykorzystalismy klase dziedziczaca po tej klasie.

SimpleDataSource<float[,], float[,]> dataSource = new(XTrain, YTrain, XTest, YTest);

Listing 5.9. Definicja dostawcy danych treningowych i testowych dla danych Boston Housing
Zmienna dataSource jest nastepnie przekazywana do metody Fit trenera, jak pokazano na listingu 5.13.

Pozostate klasy dostawcodw danych znajduja sie w przestrzeni nazw NeuralNetworks.DataSources.
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5.4.3. Optymalizatory i wspotczynniki uczenia

Do aktualizacji wag i biaséw modelu podczas procesu trenowania stuza optymalizatory (optimizers).
Klasy implementujgce optymalizatory znajduja sie w przestrzeni nazw NeuralNetworks.Optimizers.

Przyktadowe optymalizatory to:

e optymalizator spadku gradientowego (Stochastic Gradient Descent, SGD) - GradientDescent
Optimizer,

e optymalizator spadku gradientowego z momentem - GradientDescentMomentumOptimizer,
e optymalizator Adam - AdamOptimizer.

(i) NOTE

Optymalizatory SGD zawieraja w nazwie stowo "Stochastic", ale w rzeczywistosci ich implementacja
@ nie wprowadza zadnego losowego, "stochastycznego" aspektu. W zatozeniach losowosc ta
polegata na losowym wyborze probki treningowej do obliczania gradientu w kazdej iteracji. W
naszej implementacji gradient jest obliczany na podstawie catego batcha (lub nawet wszystkich)
probek treningowych, co jest zgodne z podejsciem zwanym mini-batch gradient descent. Nazwa ta
jednak jest powszechnie uzywana w literaturze i w implementacjach.

Optymalizatory korzystaja ze wspoétczynnikow uczenia (learning rates), ktére okreslaja, jak duze kroki
maja by¢ wykonywane podczas aktualizacji wag i biaséw w kolejnych epokach. Klasy implementujace
wspotczynniki uczenia znajduja sie w przestrzeni nazw NeuralNetworks.LearningRates.
Zaimplementowane zostaty miedzy innymi:

e staty wspotczynnik uczenia - ConstantLearningRate,

e wyktadniczy spadek wspdtczynnika uczenia - ExponentialDecaylLearningRate,

¢ liniowy spadek wspotczynnika uczenia - LinearDecaylLearningRate.

Diagramy klas odpowiedzialnych za optymalizacje przedstawiono ponizej.
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Rysunek 5.7. Diagram klas optymalizatorow ( wspétczynnikow uczenia

5.4.3.1. Spadek gradientowy z momentem

Optymalizator spadku gradientowego z momentem (SGD with Momentum) zostat zaimplementowany w
nastepujacy sposdb:

public class GradientDescentMomentumOptimizer(LearningRate learningRate, float momentum)
: Optimizer(learningRate)

private readonly Dictionary<float[,], float[,]> _velocities2D = [];

public override void Update(Layer? layer, float[,] param, float[,] paramGradient)
{

float learningRate = LearningRate.GetlLearningRate();
float[,] velocities = GetOrCreateVelocities(param);

int diml = param.GetLength(0);

int dim2 = param.GetLength(1);

for (int 1 = @; i < diml; i++)

{
for (int j = ©; j < dim2; j++)
{

velocities[i, j] = velocities[i, j] * momentum + learningRate *
paramGradient[i, j];

param[i, j] -= velocities[i, j];
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private float[,] GetOrCreateVelocities(float[,] param)

{
if (_velocities2D.TryGetValue(param, out float[,]? velocities))
{
return velocities;
}
else
{
velocities = new float[param.GetLength(9), param.GetLength(1)];
_velocities2D.Add(param, velocities);
return velocities;
¥
}

Listing 5.74. Implementacja optymalizatora spadku gradientowego z momentem w bibliotece
NeuralNetworks

Zasade dziatania tego optymalizatora mozemy przedstawic¢ za pomoca ponizszych wzorow:

Ve = v +lr-g;

Nl
W¢ = W — Vg (5 0)

gdzie

e tto numer kroku (kolejnego batcha),

e w; to waga w kroku t (przed i po aktualizacji),

e g; to gradient straty wzgledem wagi w kroku t (g: = VL(wy)),

o v; to predkos¢ (moment) w kroku £ (poczatkowo vy jest inicjalizowane jako 0),
® 1 to wspotczynnik momentu (zazwyczaj ustawiany na 0.9),

o [r to wspotczynnik uczenia dla danej epoki.

Jezeli wspdtczynnik momentu p jest ustawiony na 0, optymalizator ten sprowadza sie do klasycznego
spadku gradientowego.

5.4.3.2. Adam

Nieco bardziej ztozony jest optymalizator Adam (Adaptive Moment Estimation). Jego implementacja w
C# w bibliotece NeuralNetworks wyglada nastepujaco (pokazano jedynie wybrane metody dla tablic 2D):

public class AdamOptimizer : Optimizer

{
private readonly float _betal;
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private readonly float beta2;
private readonly float _eps;

private readonly Dictionary<float[,], State2D> _states2D = [];

public AdamOptimizer(LearningRate learningRate, float betal = 0.9f, float beta2 =
0.999f, float eps = le-8f)

: base(learningRate)
{
_betal = betal;
_beta2 = beta2;
_€ps = eps;
}

public override void Update(Layer? layer, float[,] param, float[,] paramGradient)

{
(int t, float[,] m, float[,] v) = GetOrCreateState(param);

float betalt
float beta2t

MathF.Pow(_betal, t);
MathF.Pow(_beta2, t);

float 1lr = LearningRate.GetLearningRate();

int diml
int dim2

param.GetLength(9);

param.GetLength(1);

for (int 1 = @; i < diml; i++)

{
for (int j = 0; j < dim2; j++)
{
m{i, j] = _betal * m[i, j] + (1 - _betal) * paramGradient[i, j];
v[i, j] = _beta2 * v[i, j] + (1 - _beta2) * paramGradient[i, j] *

paramGradient[i, j];

float mHat
float vHat

m[i, j] / (1 - betalt);
v[i, j] / (1 - beta2t);

param[i, j] -= 1lr * mHat / (MathF.Sqgrt(vHat) + _eps);

private State2D GetOrCreateState(float[,] param)

{
if (_states2D.TryGetValue(param, out State2D? state))

{
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state.T++;

return state;
}
var newState = new State2D(param);
_states2D[param] = newState;
return newState;

private sealed class State2D

{
public int T { get; set; } = 1;
public float[,] M { get; }
public float[,] V { get; }

public State2D(float[,] param)
{

int rows = param.GetLength(9);

int cols
M
\Y

param.GetLength(1);
new float[rows, cols];

new float[rows, cols];

public void Deconstruct(out int t, out float[,] m, out float[,] v)

{

Listing 5.15. Implementacja optymalizatora Adam w bibliotece NeuralNetworks

Zasade dziatania optymalizatora Adam mozemy przedstawi¢ za pomoca ponizszych wzorow:

my=P1-my_1+ (1 —P1) -9
v =Py vi_1+ (1 — Ba) - g

o my
my = ————
1-pB
~ Uy
V= ——
1-p4

mmy
wy = wy — lr - ——
vV ’1375 +e€

t:=t+1



gdzie

e t to numer kroku (kolejnego batcha) (poczatkowo t = 1),

e w; to waga w kroku ¢ (przed i po aktualizagji),

e g; to gradient straty wzgledem wagi w kroku t (g: = VL(w;)),

e my; to pierwszy moment (Srednia kroczaca gradientow) w kroku t (my jest inicjalizowane jako 0),

e v; to drugi moment (srednia kroczaca kwadratéw gradientow) w kroku ¢ (vg jest inicjalizowane jako
0),

e M, to skorygowany pierwszy moment w kroku £,

e 1; to skorygowany drugi moment w kroku t,

e (1 i B2 to wspdtczynniki wygtadzania (zazwyczaj ustawiane na 0.9 i 0.999),

e [r to wspotczynnik uczenia dla danej epoki,

e € to mata stata dodawana do mianownika w celu unikniecia dzielenia przez zero (zazwyczaj
ustawiana na 1e-8).

Czesciowe objasnienie zasady dziatania tego optymalizatora mozna znalez¢ w na tej stronie.
Oryginalny artykut znajduje sie na ArXiv.

5.5. Zastosowanie biblioteki do analizy danych Boston
Housing

W poprzednim rozdziale utworzylismy prostg sie¢ neuronowg przeznaczong do przewidywania cen
domoéw na podstawie danych ze zbioru Boston Housing. Sprobujmy wiec ponownie przeanalizowac¢ dane
z tego zbioru, tym razem korzystajac z biblioteki NeuralNetworks.

(0 NOTE

Ponizszy kod w petnej wersji znajduje sie na GitHub@

5.5.1. Definicja modelu

Model sieci neuronowej mozemy zdefiniowac poprzez utworzenie klasy dziedziczacej po
BaseModel<TlInputData, TPrediction> i nadpisanie metody CreateLayerListBuilder, w ktorej okreslamy

strukture sieci (liczbe warstw, liczbe neurondéw w kazdej warstwie oraz funkcje aktywacji). W naszym
przypadku model bedzie miat jedng warstwe ukrytg z czterema neuronami i funkcja aktywacji tanh oraz
warstwe wyjsciowa z jednym neuronem i funkgcja liniowa. W naszej bibliotece nie musimy jawnie
deklarowac warstwy wejsciowej, poniewaz jest ona implikowana przez ksztatt danych wejsciowych.

class BostonHousingModel(SeededRandom? random)
: BaseModel<float[,], float[,]>(new MeanSquaredError(), random)
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protected override LayerListBuilder<float[,], float[,]> CreatelLayerListBuilder()

{
GlorotInitializer initializer = new(Random);
return AddLayer(new DenselLayer(4, new Tanh2D(), initializer))
.AddLayer(new DenselLayer(1l, new Linear(), initializer));
}

Listing 5.16. Definicja modelu sieci neuronowej do przewidywania cen w zbiorze Boston Housing

5.5.2. Dane zrodtowe

SimpleDataSource<float[,], float[,]> dataSource = new(XTrain, YTrain, XTest, YTest);

Tablice XTrain, YTrain, XTest i YTest zostaty przygotowane w sposéb analogiczny do przedstawionego na
listingach 3.1 i 3.2. Miedzy innymi zostaty one poddane normalizacji za pomoca procedury Standardize.

5.5.3. Trenowanie modelu

Trenowanie modelu odbywa sie poprzez utworzenie instancji klasy Trainer<TInputData, TPrediction>,

przekazanie do niej modelu i optymalizatora, a nastepnie wywotanie metody Fit wraz z dostawca
danych i parametrami uczenia/logowania, jak pokazano ponize;j.

BostonHousingModel model = new(commonRandom);

ExponentialDecaylLearningRate learningRate = new(
initiallearningRate: 0.0009f,
finallLearningRate: 0.0005f

)s

Trainer2D trainer = new(
model,
new GradientDescentMomentumOptimizer(learningRate, 0.9f),
random: commonRandom,
logger: logger

)s

trainer.Fit(
dataSource,
epochs: 48 000,
evalEveryEpochs: 2 000,
logEveryEpochs: 2_000,
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batchSize: 400
)s

Listing 5.17. Trenowanie modelu sieci neuronowej do przewidywania cen w zbiorze Boston Housing

5.5.4. Rezultat trenowania

Po zakonczeniu trenowania modelu uzyskalismy wyniki przedstawione na ponizszej ilustracji.
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Train loss (average): 5,783022
Test loss: 15,191841

Epoch U40EEG/U8000. ..

Current learning rate: 0,00055146293.
Train loss (average): 5,7712727

Test loss: 15,190115

Epoch 42000/48000. ..

Current learning rate: 0,00053812074.
Train loss (average): 5,761054

Test loss: 15,195444

Epoch 44000/48000...

Current learning rate: 0,0005251014.
Train loss (average): 5,7518935
Test loss: 15,208461

Epoch 46000/48000. ..
Current learning rate: 0,00051239703.
Train loss (average): 5,743U587

Test loss: 15,231816

Epoch 48000/48000...
Current learning rate: 0,0005.
Train loss (average): 5,735411
Test loss: 15,269817

Fit finished in 8,68 s.
61 parameters trained.

Loss on test data: 15,26982

Sample predictions vs actual values:
Sample No Predicted Actual

16,3194 20,2000
18,9333 20,6000
16,6895 18,6000
38,1352 50,0000




36,4975 33,8600

w zbiorze Boston

Poniewaz jest to juz nasze ostatnie spotkanie z danymi Boston Housing, pozwolimy sobie na krétkie
podsumowanie wynikdw.

MSE na Czas
Funkcja MSE na zbiorze zbiorze  treningu
Metoda aktywacji  Optymalizator treningowym testowym [s]
Regresja liniowa Linear SGD 19,44 29,49 0,87
(rozdziat 3)
Pierwsza sie¢ Sigmoid SGD 7,72 17,44 4,37
neuronowa
(rozdziat 4)
Biblioteka Tanh SGD z 574 15,27 8,23
NeuralNetworks momentum

(rozdziat 5)

Tabela 5.1. Poréwnanie wynikow réznych metod na danych Boston Housing (48 tys. epok)

5.6. Dodatek

Wybrane pojecia zwigzane z sieciami neuronowymi i uczeniem maszynowym, ktore pojawity sie w tym
rozdziale, zostaty wyjasnione ponizej.

5.6.1. Logits

Logits stanowig wyjscie sieci przed aktywacja. Nie sg prawdopodobienstwami (moga by¢ ujemne, nie
sumuja sie do 1). Sg podstawa do obliczania strat i decyzji modelu. Softmax / sigmoid zamieniaja logits
na prawdopodobienstwa.

5.6.2. Normalizacja danych

Normalizacja danych to proces skalowania cech wejsciowych do okreslonego zakresu lub rozktadu.
Pomaga to w stabilizacji i przyspieszeniu procesu trenowania sieci neuronowej. Popularne metody
normalizacji to:

e Min-Max Scaling: Skalowanie cech do zakresu [0, 1] lub [-1, 1].
e Standaryzacja (Z-score Normalization): Przeksztatcanie cech do rozktadu o sredniej 0 i odchyleniu
standardowym 1.
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5.6.3. Epoka i krok

e Epoka (epoch): Petne przejscie przez caty zbiér treningowy podczas trenowania modelu.
e Krok (step): Pojedyncza aktualizacja wag modelu na podstawie jednej partii danych (batcha).

5.6.4. Batch i rozmiar batcha

e Batch: Podzbiér danych treningowych uzywany do jednej aktualizacji wag modelu.
e Rozmiar batcha (batch size): Liczba probek w jednym batchu. Wptywa na stabilnos¢ i szybkos¢
trenowania.

5.6.5. Odchylenie standardowe i wariancja

e Odchylenie standardowe (standard deviation): Miara rozproszenia danych wokot sredniej. Oblicza sie
je jako pierwiastek kwadratowy z wariangji.

e Wariancja (variance): Srednia z kwadratéw odchylen poszczegdélnych wartosci od éredniej. Mierzy, jak
bardzo dane s3g rozproszone.

5.7. Podsumowanie

W tym rozdziale przedstawilismy biblioteke NeuralNetworks, ktora umozliwia definiowanie, trenowanie i
wykorzystywanie modeli sieci neuronowych w jezyku C#. Omoéwilismy kluczowe komponenty biblioteki,
takie jak warstwy sieci, funkcje aktywacji, funkcje straty, inicjalizatory wag, optymalizatory oraz
mechanizmy dostarczania danych treningowych. Na zakonczenie zastosowalismy biblioteke do
rozwigzania problemu przewidywania cen doméw na podstawie danych ze zbioru Boston Housing,
demonstrujac jej praktyczne zastosowanie.

Created: 2025-12-03

Last modified: 2026-01-10

Title: 5. Biblioteka NeuralNetworks

Tags: [C#] [Sieci neuronowe] [Biblioteka] [NeuralNetworks]
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6. Dane MNIST

W poprzednim rozdziale przedstawiona zostata biblioteka NeuralNetworks - jej struktura, kluczowe

komponenty oraz sposdb definiowania, trenowania i wykorzystywania modeli sieci neuronowych.
Omoéwione zostaty elementy niskopoziomowe, takie jak operacje macierzowe i funkcje straty, oraz
wyzszego poziomu abstrakcje obejmujace modele, warstwy, operacje, optymalizatory oraz proces
trenowania. Celem tamtego rozdziatu byto przedstawienie wzglednie elastycznego, ogélnego narzedzia,
ktore utatwi dalsza, praktyczng prace z sieciami neuronowymi bez koniecznosci kazdorazowego
implementowania ich od podstaw.

W niniejszym rozdziale przejdziemy od opisu biblioteki do jej praktycznego zastosowania. Jako przyktad
wykorzystamy klasyczny zbiér danych MNIST, zawierajacy obrazy odrecznie pisanych cyfr, ktory
tradycyjnie stanowi punkt odniesienia w zadaniach klasyfikacji obrazow.

Analiza danych MNIST zostanie przeprowadzona z wykorzystaniem sieci opartych o warstwy geste (ang.
dense layers, fully connected layers) oraz z wykorzystaniem sieci konwolucyjnych.

6.1. Zbior danych MNIST

Podobnie jak zbiér Boston Housing, dane MNIST sg powszechnie dostepne i stosowane w literaturze.

Zbior ten zawiera 70 000 obrazow odrecznie pisanych cyfr (0-9), podzielonych na 60 000 obrazow
treningowych i 10 000 obrazéw testowych. Kazdy obraz ma rozmiar 28x28 pikseli i jest reprezentowany
jako macierz wartosci szarosci (od 0 do 255). Celem zadania jest sklasyfikowanie kazdego obrazu do
jednej z dziesieciu klas odpowiadajacych cyfrom od 0 do 9 (problem klasyfikacji wieloklasowej z
pojedyncza etykieta, ang. multi-class, single-label classification problem).

W naszych eksperymentach bedziemy pracowaé na znacznie mniejszym zbiorze uczacym, zawierajagcym
jedynie 20 000 obrazéw (plus 10 000 obrazéw testowych). Zbior ten znajduje sie na GitHub ™.
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Rysunek 6.1. Przyktadowe obrazy z zestawu danych MNIST (zrédto: Wikipedia)

6.2. Warstwy geste
6.2.1. Architektura modelu

W naszych eksperymentach wykorzystamy prosta sie¢ neuronowa zbudowana z warstw gestych.
Architektura modelu bedzie nastepujaca:

class MnistModel(SeededRandom? random)
: BaseModel<float[,], float[,]>(new SoftmaxCrossEntropyLoss(), random)

private const float DropoutlKeepProb

0.85F;

private const float Dropout2KeepProb = 0.85f;

private readonly Operation2D activationFunctionl

new ReLU();
private readonly Operation2D activationFunction2 = new LeakyReLU();

protected override LayerListBuilder<float[,], float[,]> CreatelLayerListBuilder()
{

GlorotInitializer initializer = new(Random);
Dropout2D? dropoutl = new(DropoutlKeepProb, Random);
Dropout2D? dropout2 = new(Dropout2KeepProb, Random);

return AddLayer(new DenselLayer(178, activationFunctionl, initializer, dropoutl))
.AddLayer(new Denselayer(46, activationFunction2, initializer, dropout2))
.AddLayer(new DenselLayer(10, new Linear(), initializer));

Listing 6.1. Definicia modelu MNIST z warstwami gestymi

Model sktada sie z trzech warstw gestych. Pierwsza warstwa zawiera 178 neurondw z funkcja aktywacji
ReLU, druga warstwa ma 46 neuronow z funkcja aktywacji Leaky RelU, a trzecia warstwa wyjsciowa
sktada sie z 10 neuronow (po jednym na kazda klase cyfr) z liniowa funkcja aktywacji. Dla pierwszych
dwéch warstw zastosowano mechanizm dropout z prawdopodobienstwem zachowania neuronu rownym
0.85, co pomaga w redukgji przeuczenia modelu. Funkcja straty uzyta w modelu to Softmax Cross-
Entropy, odpowiednia dla zadan klasyfikacji wieloklasowe;.

W modelu zastosowano dwie rozne funkcje aktywacji: ReLU (Rectified Linear Unit) oraz Leaky RelLU,
jednak mozna eksperymentowac z innymi funkcjami, takimi jak Sigmoid czy Tanh, aby oceni¢ ich wptyw
na wyniki modelu.

Inicjalizacja wag
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Dropout
Funkcje straty

Uzyta w naszym modelu funkcja straty jest Softmax Cross-Entropy, ktora jest powszechnie stosowana w
zadaniach klasyfikacji wieloklasowe;j.

6.2.2. Proces trenowania
6.2.2.1. Przygotowanie danych
6.2.2.2. Wyniki trenowania
6.3. Siec konwolucyjna

Siec¢ konwolucyjna jest specjalnym rodzajem sieci neuronowej, ktora jest szczegolnie skuteczna w analizie
danych o strukturze przestrzennej, takich jak obrazy. W przeciwienstwie do warstw gestych, ktére tacza
kazdy neuron z kazdym innym neuronem w poprzedniej warstwie, warstwy konwolucyjne wykorzystuja
operacje konwolugji, ktére pozwalaja na wykrywanie lokalnych wzorcow w danych wejsciowych.

Operacja konwolucji przebiega nastepujaco:

1. Na wejsciu mamy obraz reprezentowany jako macierz pikseli (np. 28x28 dla obrazéw MNIST).

2. Naktadamy na obraz maty filtr (jadro konwolucyjne), ktory przesuwamy po obrazie, np. piksel po
pikselu, wykonujac operacje iloczynu skalarnego miedzy wartosciami filtra a odpowiadajacymi im
wartosciami pikseli w obrazie.

3. Wynikiem tej operacji jest nowa macierz (mapa cech), ktora reprezentuje wykryte wzorce w obrazie.
Pojedyncza mape cech nazywamy kanatem. W praktyce stosuje sie wiele filtrow, co prowadzi do
powstania wielu kanatéw.

6.3.1. Architektura modelu
6.3.2. Proces i wyniki trenowania
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