Class Loss<TPrediction>
- Namespace
- NeuralNetworks.Losses
- Assembly
- NeuralNetworks.dll
The "loss" of a neural network.
public abstract class Loss<TPrediction>
Type Parameters
TPrediction
- Inheritance
-
Loss<TPrediction>
- Derived
- Inherited Members
Properties
Prediction
public TPrediction Prediction { get; }
Property Value
- TPrediction
Target
protected TPrediction Target { get; }
Property Value
- TPrediction
Methods
Backward()
Computes gradient of the loss value with respect to the input to the loss function.
public TPrediction Backward()
Returns
- TPrediction
CalculateLoss()
protected abstract float CalculateLoss()
Returns
CalculateLossGradient()
protected abstract TPrediction CalculateLossGradient()
Returns
- TPrediction
Clone()
public Loss<TPrediction> Clone()
Returns
- Loss<TPrediction>
CloneBase()
protected virtual Loss<TPrediction> CloneBase()
Returns
- Loss<TPrediction>
EnsureSameShape(TPrediction?, TPrediction)
[Conditional("DEBUG")]
protected abstract void EnsureSameShape(TPrediction? prediction, TPrediction target)
Parameters
predictionTPredictiontargetTPrediction
Forward(TPrediction, TPrediction)
Computes the actual loss value
public float Forward(TPrediction prediction, TPrediction target)
Parameters
predictionTPredictiontargetTPrediction